Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2016}{2017}\)x \(\frac{2017}{2018}\)x \(\frac{2019}{2020}\)=\(\frac{504}{505}\)
đ/s:\(\frac{504}{505}\)
Phân tích 2 phân số ta có:
1 = \(\dfrac{2017\times2019}{2017\times2019}\) = \(\dfrac{\left(2018-1\right)\times\left(2018+1\right)}{2017\times2019}\) = \(\dfrac{2018^2-1^2}{2017\times2019}\)
\(\dfrac{2018\times2018}{2017\times2019}\) = \(\dfrac{2018^2}{2017\times2019}\)
Vì \(2018^2\) > \(2018^2-1^2\) nên \(\dfrac{2018^2}{2017\times2019}\) > \(\dfrac{2018^2-1^2}{2017\times2019}\) hay \(\dfrac{2018\times2018}{2017\times2019}\) > 1
(Áp dụng hằng đẳng thức \(a^2-b^2\) = (a - b)(a + b))
nhầm dòng 2 nhé
\(=\dfrac{2018\times2018}{2018\times2018-1}=\)
Vì \(2018\times2018>2018\times2018-1\) nên \(\dfrac{2018\times2018}{2018\times2018-1}>1\)
#)Giải :
\(Q=2+\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
Ta thấy : \(2>\frac{2016}{2017};2>\frac{2017}{2018};2>\frac{2018}{2019}\left(1\right)\)
\(\frac{2016}{2017+2018+2019}< \frac{2016}{2017}\left(2\right)\)
\(\frac{2017}{2017+2018+2019}< \frac{2017}{2018}\left(3\right)\)
\(\frac{2018}{2017+2018+2019}< \frac{2018}{2019}\left(4\right)\)
Từ (1) (2) (3) (4) \(\Rightarrow P>Q\)
Ta có:
\(1-\frac{2017}{2018}=\frac{1}{2018};1-\frac{2018}{2019}=\frac{1}{2019};1-\frac{2019}{2020}=\frac{1}{2020}\)
Vì \(\frac{1}{2018}>\frac{1}{2019}>\frac{1}{2020}\)nên \(\frac{2017}{2018}< \frac{2018}{2019}< \frac{2019}{2020}\)
2017/2018 = (2018-1)/2018 = 1-1/2018
2018/2019 = (2019-1)/2019 = 1 - 1/2019
2019/2020 = (2020-1)/2020 = 1 - 1/2020
Có 1/2018 > 1/2019 > 1/2020 => 2017/2018 < 2018/2019 < 2019/2020
S = 2020 + 2019 - 2018 - 2017 + 2016 + 2015 - 2014 - 2013 + ... + 4 + 3 - 2 - 1
= ( 2020 + 2019 - 2018 - 2017 ) + ( 2016 + 2015 - 2014 - 2013 ) + ... + ( 4 + 3 - 2 - 1 ) (có tất cả 2020 : 4 = 505 nhóm)
= 4 + 4 + ... + 4
= 4. 505 = 2020
Vậy S = 2020.
`a,`
`5/6=1-1/6`
`7/8=1-1/8`
Mà `1/6>1/8 -> 5/6<7/8`
`b,`
`9/5=(9 \times 2)/(5 \times 2)=18/10`
`3/2=(3 \times 5)/(2 \times 5)=15/10`
`18/10 > 15/10 -> 9/5 > 3/2`
`c,`
`2017/2018 = 1-1/2018`
`2019/2020=1-1/2020`
`1/2018 > 1/2020 -> 2017/2018 < 2019/2020`
`d,`
`2018/2017 = 1+1/2017`
`2020/2019 = 1+1/2019`
`1/2017 > 1/2019 -> 2018/2017>2020/2019`
(52/51) x (53/52) x (54/53) x ....x (2017/2016) x (2018/2017)
=(52 x 53x 54x ...x 2017 x 2018)/(51x 52x 53x ...x2016x 2017)
=2018/51
504/505
\(\frac{2016}{2017}\times\frac{2017}{2018}\times\frac{2018}{2019}\times\frac{2019}{2020}\)=
\(0,998109801980198\)
Đổi ra ta sẽ có !
\(\frac{504}{505}\)
Vậy là : ...................