Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = 20182018 . 2019 - 20192019 . 2018
= 2018 .10001 .2019 - 2019.10001 .2018
= 0
#hok tốt#
Kiến thức cần nhớ:
Tử số 1 lớn mẫu số 1; tử số 2 lớn hơn mẫu số 2
Tử số 1 trừ mẫu số 1 = tử số 2 trừ mẫu số 2 thì ta dùng phương pháp so sánh phân số bằng phần hơn em nhé. Hai phân số, phân số nào có phần hơn lớn hơn thì phân số đó lớn hơn
\(\dfrac{a+2020}{a+2017}\) = 1 + \(\dfrac{3}{a+2017}\)
\(\dfrac{a+2021}{a+2018}\) = 1 + \(\dfrac{3}{a+2018}\)
Vì \(\dfrac{3}{a+2017}\) > \(\dfrac{3}{a+2018}\)
Vậy \(\dfrac{a+2020}{a+2017}\) > \(\dfrac{a+2021}{a+2018}\)
`a,`
`5/6=1-1/6`
`7/8=1-1/8`
Mà `1/6>1/8 -> 5/6<7/8`
`b,`
`9/5=(9 \times 2)/(5 \times 2)=18/10`
`3/2=(3 \times 5)/(2 \times 5)=15/10`
`18/10 > 15/10 -> 9/5 > 3/2`
`c,`
`2017/2018 = 1-1/2018`
`2019/2020=1-1/2020`
`1/2018 > 1/2020 -> 2017/2018 < 2019/2020`
`d,`
`2018/2017 = 1+1/2017`
`2020/2019 = 1+1/2019`
`1/2017 > 1/2019 -> 2018/2017>2020/2019`
Lời giải:
$\frac{a+2020}{a+2017}=\frac{a+2017+3}{a+2017}=1+\frac{3}{a+2017}$
$\frac{a+2021}{a+2018}=\frac{a+2018+3}{a+2018}=1+\frac{3}{a+2018}$
Hiển nhiên: $\frac{3}{a+2017}> \frac{3}{a+2018}$
Suy ra $1+\frac{3}{a+2017}> 1+\frac{3}{a+2018}$
Hay $\frac{a+2020}{a+2017}> \frac{a+2021}{a+2018}$
\(\frac{2017}{2018}\)và \(\frac{2019}{2020}\)
Ta có : \(1-\frac{2017}{2018}=\frac{1}{2018};1-\frac{2019}{2020}=\frac{1}{2020}\)
Vì \(\frac{1}{2018}>\frac{1}{2020}\)nên \(\frac{2017}{2018}< \frac{2019}{2020}\)
Cái này là so sánh bằng phần bù của đơn vị nha bn !
Học tốt #
\(\frac{2017}{2018};\frac{2018}{2019};\frac{2019}{2020}\)
\(\Rightarrow\frac{2017}{2018}< \frac{2019}{2020}\)
\(\left(2020\frac{2018}{2021}-2019\frac{20182018}{20212021}\right):\frac{2018}{2021}\)
\(=\left(2020\frac{2018}{2021}-2019\frac{2018}{2021}\right):\frac{2018}{2021}\)
\(=1:\frac{2018}{2021}=\frac{2021}{2018}\)
Ta có:
\(1-\frac{2017}{2018}=\frac{1}{2018};1-\frac{2018}{2019}=\frac{1}{2019};1-\frac{2019}{2020}=\frac{1}{2020}\)
Vì \(\frac{1}{2018}>\frac{1}{2019}>\frac{1}{2020}\)nên \(\frac{2017}{2018}< \frac{2018}{2019}< \frac{2019}{2020}\)
2017/2018 = (2018-1)/2018 = 1-1/2018
2018/2019 = (2019-1)/2019 = 1 - 1/2019
2019/2020 = (2020-1)/2020 = 1 - 1/2020
Có 1/2018 > 1/2019 > 1/2020 => 2017/2018 < 2018/2019 < 2019/2020