K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

Ta có:

\(1-\frac{2017}{2018}=\frac{1}{2018};1-\frac{2018}{2019}=\frac{1}{2019};1-\frac{2019}{2020}=\frac{1}{2020}\)

Vì \(\frac{1}{2018}>\frac{1}{2019}>\frac{1}{2020}\)nên \(\frac{2017}{2018}< \frac{2018}{2019}< \frac{2019}{2020}\)

14 tháng 7 2019

2017/2018 = (2018-1)/2018 = 1-1/2018

2018/2019 = (2019-1)/2019 = 1 - 1/2019

2019/2020 = (2020-1)/2020 = 1 - 1/2020

Có 1/2018 > 1/2019 > 1/2020 => 2017/2018 < 2018/2019 < 2019/2020

C = 20182018 . 2019 - 20192019 . 2018

   = 2018 .10001 .2019 - 2019.10001 .2018

   = 0

#hok tốt#

9 tháng 6 2019

C = 20182018 x 2019 - 20192019 x 2018

=> C = 2018 x 10001 x 2019 -  2019 x 10001 x 2018

=> C = 2018 x 2019 x (10001 - 10001)

=> C = 2018 x 2019 x 0

=> C = 0

~Study well~

#SJ

11 tháng 4 2023

>

12 tháng 4 2023

Kiến thức cần nhớ:

Tử số 1 lớn mẫu số 1; tử số 2 lớn hơn mẫu số 2

Tử số 1 trừ  mẫu số 1 = tử số 2 trừ mẫu số 2 thì ta dùng phương pháp so sánh phân số bằng phần hơn em nhé. Hai phân số, phân số nào có phần hơn lớn hơn thì phân số đó lớn hơn

\(\dfrac{a+2020}{a+2017}\) = 1 + \(\dfrac{3}{a+2017}\)

\(\dfrac{a+2021}{a+2018}\) = 1 + \(\dfrac{3}{a+2018}\)

Vì \(\dfrac{3}{a+2017}\) > \(\dfrac{3}{a+2018}\)

Vậy \(\dfrac{a+2020}{a+2017}\) > \(\dfrac{a+2021}{a+2018}\) 

6 tháng 4 2023

`a,`

`5/6=1-1/6`

`7/8=1-1/8`

Mà `1/6>1/8 -> 5/6<7/8`

`b,`

`9/5=(9 \times 2)/(5 \times 2)=18/10`

`3/2=(3 \times 5)/(2 \times 5)=15/10`

`18/10 > 15/10 -> 9/5 > 3/2`

`c,`

`2017/2018 = 1-1/2018`

`2019/2020=1-1/2020`

`1/2018 > 1/2020 -> 2017/2018 < 2019/2020`

`d,`

`2018/2017 = 1+1/2017`

`2020/2019 = 1+1/2019`

`1/2017 > 1/2019 -> 2018/2017>2020/2019`

4 tháng 4 2022

>

>

<

4 tháng 4 2022

9/5 > 3/2

2017/2018 = 2019/2020

2018/2017  2020/2019

AH
Akai Haruma
Giáo viên
12 tháng 4 2023

Lời giải:

$\frac{a+2020}{a+2017}=\frac{a+2017+3}{a+2017}=1+\frac{3}{a+2017}$

$\frac{a+2021}{a+2018}=\frac{a+2018+3}{a+2018}=1+\frac{3}{a+2018}$

Hiển nhiên: $\frac{3}{a+2017}> \frac{3}{a+2018}$

Suy ra $1+\frac{3}{a+2017}> 1+\frac{3}{a+2018}$

Hay $\frac{a+2020}{a+2017}> \frac{a+2021}{a+2018}$

25 tháng 7 2018

Bạn có thể tham khảo tại đây nhé : https://

25 tháng 7 2018

Sorry mk nhầm

25 tháng 7 2018

\(\frac{2017}{2018}\)và   \(\frac{2019}{2020}\)

Ta có : \(1-\frac{2017}{2018}=\frac{1}{2018};1-\frac{2019}{2020}=\frac{1}{2020}\)

Vì \(\frac{1}{2018}>\frac{1}{2020}\)nên \(\frac{2017}{2018}< \frac{2019}{2020}\)

Cái này là so sánh bằng phần bù của đơn vị nha bn !

Học tốt #

25 tháng 7 2018

\(\frac{2017}{2018};\frac{2018}{2019};\frac{2019}{2020}\)

 \(\Rightarrow\frac{2017}{2018}< \frac{2019}{2020}\)

19 tháng 7 2020

\(\left(2020\frac{2018}{2021}-2019\frac{20182018}{20212021}\right):\frac{2018}{2021}\)

\(=\left(2020\frac{2018}{2021}-2019\frac{2018}{2021}\right):\frac{2018}{2021}\)

\(=1:\frac{2018}{2021}=\frac{2021}{2018}\)

19 tháng 7 2020

\(\left(2020\frac{2018}{2021}-2019\frac{20182018}{20212021}\right)\div\frac{2018}{2021}\)

\(=\left(2020\frac{2018}{2021}-2019\frac{2018}{2021}\right)\div\frac{2018}{2021}\)

\(=1\div\frac{2018}{2021}\)

\(=\frac{2021}{2018}\)