Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}\div\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)
ĐKXĐ : x > 1
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\left(\frac{\sqrt{x}+1}{\sqrt{x}}+\frac{1}{\sqrt{x}-1}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\left(\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\times\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(=\frac{x}{\sqrt{x}-1}\)
Để A = 9/2
=> \(\frac{x}{\sqrt{x}-1}=\frac{9}{2}\)( ĐK : x > 1 )
<=> 2x = 9( √x - 1 )
<=> 2x = 9√x - 9
<=> 2x + 9 = 9√x (1)
Bình phương hai vế
(1) <=> 4x2 + 36x + 81 = 81x
<=> 4x2 + 36x + 81 - 81x = 0
<=> 4x2 - 45x + 81 = 0
<=> 4x2 - 36x - 9x + 81 = 0
<=> 4x( x - 9 ) - 9( x - 9 ) = 0
<=> ( x - 9 )( 4x - 9 ) = 0
<=> \(\orbr{\begin{cases}x-9=0\\4x-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x=\frac{9}{4}\end{cases}}\)( tm )
a) ĐKXĐ: x\(\ne\) 0;4
Ta có: Q= \(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)
= \(\frac{4\sqrt{x}\cdot\left(2-\sqrt{x}\right)+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{\sqrt{x}-1-2\cdot\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
=\(\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)= \(\frac{4\sqrt{x}\cdot\left(2+\sqrt{x}\right)}{2+\sqrt{x}}\cdot\frac{-\sqrt{x}}{3-\sqrt{x}}\)=\(\frac{-4}{3-\sqrt{x}}\)=\(\frac{4}{\sqrt{x}-3}\)
b) Q=-1 => \(\frac{4}{\sqrt{x}-3}=-1\)
<=> \(4=3-\sqrt{x}\)
<=> \(\sqrt{x}=-1\) (vô lí)
Vậy ko tìm được x.
\(A=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-x}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(A=\left(\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)\(\div\left(\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(A=\left(\frac{x+2\sqrt{x}+1+x-\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\frac{2x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{4\sqrt{x}}\)
\(A=\frac{2x+1}{4\sqrt{x}}\)
c, \(A=\frac{2x+1}{4\sqrt{x}}=\frac{\sqrt{x}}{2}+\frac{1}{4\sqrt{x}}\)
ap dụng cô si ta có \(\frac{\sqrt{x}}{2}+\frac{1}{4\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{2}\cdot\frac{1}{4\sqrt{x}}}=\frac{\sqrt{2}}{2}\)
dấu = xảy ra khi \(\frac{\sqrt{x}}{2}=\frac{1}{4\sqrt{x}}\Leftrightarrow x=\frac{1}{2}\) (tm)
câu 2
\(...=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|=-4\)
câu 1
\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{3}{\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)
\(P< -1\Leftrightarrow\frac{-3\sqrt{x}}{2\sqrt{x}+4}+1< 0\Leftrightarrow-\sqrt{x}+4< 0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)
a, A\(=\left(\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{x-1}{\sqrt{x}}\) ĐK x>0 ;\(x\ne1;x\ne-1\)
\(A=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4x\sqrt{x}-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}}{x-1}\)
\(A=\frac{4x\sqrt{x}}{x-1}.\frac{\sqrt{x}}{x-1}\)=\(\frac{4x^2}{\left(x-1\right)^2}\)
b, Để A =2 \(\Rightarrow\frac{4x^2}{\left(x-1\right)^2}=2\Rightarrow4x^2=2\left(x-1\right)^2\)
<=> \(4x^2=2x^2-4x+2\)
<=> \(2x^2+4x-2=0\)
<=> \(x^2+2x-1=0\)
\(\Delta=1^2-1.\left(-1\right)\) = 2
=> \(\orbr{\begin{cases}x_1=-1-\sqrt{2}\left(loại\right)\\x_2=-1+\sqrt{2}\left(nhận\right)\end{cases}}\)
Vậy x=\(-1+\sqrt{2}\)thì A =2
c, Thay x =\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)=2
=>A = \(\frac{4.2^2}{\left(2-1\right)^2}=16\)
Vậy A=16 thì x=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
a) Ta có:
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right)\div\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
\(P=\frac{x-1}{\left(\sqrt{x}-1\right)\sqrt{x}}\div\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\sqrt{x}}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{x-1}{\sqrt{x}}\)
b) Ta có: \(P>0\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x}}>0\)
\(\Leftrightarrow\frac{\left(x-1\right)\sqrt{x}}{x}>0\)
\(\Rightarrow\left(x-1\right)\sqrt{x}>0\)
\(\Rightarrow\hept{\begin{cases}x-1>0\\\sqrt{x}>0\end{cases}}\Rightarrow x>1\)
Vậy khi \(x>1\Leftrightarrow P>0\)
c) Ta có: \(P=6\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x}}=6\)
\(\Leftrightarrow x-1=6\sqrt{x}\)
\(\Leftrightarrow\left(x-1\right)^2=36x\)
\(\Leftrightarrow x^2-38x+1=0\)
\(\Leftrightarrow\left(x^2-38x+361\right)-360=0\)
\(\Leftrightarrow\left(x-19\right)^2-\left(6\sqrt{10}\right)^2=0\)
\(\Leftrightarrow\left(x-19-6\sqrt{10}\right)\left(x-19+6\sqrt{10}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-19-6\sqrt{10}=0\\x-19+6\sqrt{10}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=19+6\sqrt{10}\\x=19-6\sqrt{10}\end{cases}}\)