Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-x}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(A=\left(\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)\(\div\left(\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(A=\left(\frac{x+2\sqrt{x}+1+x-\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\frac{2x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{4\sqrt{x}}\)
\(A=\frac{2x+1}{4\sqrt{x}}\)
c, \(A=\frac{2x+1}{4\sqrt{x}}=\frac{\sqrt{x}}{2}+\frac{1}{4\sqrt{x}}\)
ap dụng cô si ta có \(\frac{\sqrt{x}}{2}+\frac{1}{4\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{2}\cdot\frac{1}{4\sqrt{x}}}=\frac{\sqrt{2}}{2}\)
dấu = xảy ra khi \(\frac{\sqrt{x}}{2}=\frac{1}{4\sqrt{x}}\Leftrightarrow x=\frac{1}{2}\) (tm)
M=(\(\frac{\sqrt{x}}{\sqrt{x}+1}\)-1): \(\frac{-1}{x+\sqrt{x}+1}\)
M=\(\frac{-1}{\sqrt{x}+1}\). -(x+\(\sqrt{x}\)+1)
M=\(\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
b, x=1
M = \(\frac{3}{2}\)
c, M= 0
=> x +\(\sqrt{x}\)+1= 0
mặt khác x+\(\sqrt{x}\)+1 = (\(\sqrt{x}\)+0,5)2+0,75 >0
=> x vô nghiệm........