Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng của mảnh đất là x (m^2, >0)
Chiều dài của mảnh đất gấp 4 lần chiều rộng nên chiều dài mảnh đất là: 4x (m^2)
Diện tích mảnh đất là: 4x.x=4x^2 (m^2)
Giảm chiều rộng đi 2m được chiều rộng mới là: x-2 (m)
Tăng chiều dài lên gấp đôi đc chiều dai mới là: 2.4x=8x(m)
Diện tích của mảnh đất mới là; 8x(x-2) (m^2)
Theo bài ra ta có phương trình:
8x(x-2)-4x^2=20
<=> 8x^2-16x-4x^2=20
<=> 4x^2-16x-20=0
<=> x=5 (tm), x=-1 (loại)
Vậy chiều rộng là 5m. Chiều dài la 4.5=20 m
Bài 11:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 90m nên ta có phương trình:
\(2\cdot\left(x+y\right)=90\)
\(\Leftrightarrow x+y=45\)(1)
Diện tích ban đầu của mảnh đất là: \(xy\left(m^2\right)\)
Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 2m thì diện tích giảm 140m2 nên ta có phương trình:
\(\left(x-5\right)\left(y-2\right)=xy-140\)
\(\Leftrightarrow xy-2x-5y+10-xy+140=0\)
\(\Leftrightarrow-2x-5y+150=0\)
\(\Leftrightarrow-2x-5y=-150\)
\(\Leftrightarrow2x+5y=150\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=45\\2x+5y=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y=90\\2x+5y=150\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-60\\x+y=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\x=45-y=45-20=25\end{matrix}\right.\)(thỏa ĐK)
Diện tích mảnh đất là:
\(x\cdot y=25\cdot20=500\left(m^2\right)\)
Vậy: Diện tích mảnh đất là 500m2
Bài 12:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 80m nên ta có phương trình:
\(2\cdot\left(x+y\right)=80\)
\(\Leftrightarrow x+y=40\)(3)
Diện tích ban đầu của mảnh đất là:
\(xy\left(m^2\right)\)
Vì khi tăng chiều dài thêm 3m và tăng chiều rộng thêm 5m thì diện tích tăng thêm 195m2 nên ta có phương trình:
\(\left(x+3\right)\left(y+5\right)=xy+195\)
\(\Leftrightarrow xy+5x+3y+15-xy-195=0\)
\(\Leftrightarrow5x+3y-180=0\)
\(\Leftrightarrow5x+3y=180\)(4)
Từ (3) và (4) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=40\\5x+3y=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+5y=200\\5x+3y=180\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=20\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40-y=40-10=30\\y=10\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài của mảnh đất là 30m
Chiều rộng của mảnh đất là 10m
Gọi x là chiều dài , y là chiều rộng 2x = 5y => x=5y/2 (1)
Chu vi 2(x+y)= 28 Thay (1) vào => 2 ( 5y/2 + y )= 28 => y = 4
x = 10
Diện tích = 40 m2 => tốn 200 triệu
Gọi x (m; > 0)là chiều dài miếng đất ; y (m; >0) là chiều rộng miếng đất
Chu vi miếng đất là 28, nên ta có phương trình 2(x+y)=28 => x + y = 14
2 lần chiều dài bằng 5 lần chiều rộng, nên ta có phương trình 2x = 5y => 2x - 5y = 0
Giải hệ phương trình ta được x = 10; y = 4 (Thỏa mãn)
Do đó diện tích miếng đất là 10 . 4 = 40 (m^2)
Vậy số tiền ông An cần để xây nhà gồm 1 tầng trệt và 2 lầu là 40. 5 . (1 + 2) = 600 triệu đồng.
Câu 1:
Gọi x là chiều dài mảnh đất (0<x<14; x>y)
Gọi y là chiều rộng mảnh vườn (0<y<14)
Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)
Vì đường chéo mảnh đất bằng 10m nên ta có PT:
x2+y2=100 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)(HPT dễ rồi bạn tự giải nha)
⇔\(\left\{{}\begin{matrix}y=8\\y=6\end{matrix}\right.\)(TM)
Vậy ta có 2 tập nghiệm (x;y) là (6;8) và (8;6)
-Độ dài 2 cạnh mảnh đất lần lượt là: 6cm và 8cm
Câu 1:
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chu vi mảnh đất là 28m nên ta có phương trình:
2(a+b)=28
hay a+b=14(1)
Vì đường chéo hình chữ nhật là 10m nên Áp dụng định lí Pytago, ta được:
\(a^2+b^2=100\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-28b+196+b^2-100=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=14-8=6\\b=14-6=8\end{matrix}\right.\\\left[{}\begin{matrix}b=6\\b=8\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=6\end{matrix}\right.\)(thỏa ĐK)
Vậy: Độ dài hai cạnh của mảnh đất hình chữ nhật lần lượt là 8m và 6m
Nửa chu vi mảnh đất: \(\dfrac{320}{2}=160\left(m\right)\)
Gọi chiều dài mảnh đất là x(m) với x>0
Chiều rộng mảnh đất là: \(160-x\) (m)
Hai lần chiều dài mảnh đất là: \(2x\) (m)
Ba lần chiều rộng là: \(3\left(160-x\right)\) (m)
Do hai lần chiều dài hơn 3 lần chiều rộng là 20m nên ta có pt:
\(2x-3\left(160-x\right)=20\)
\(\Leftrightarrow5x=500\)
\(\Rightarrow x=100\left(m\right)\)
Vậy mảnh đất dài 100m, rộng \(160-100=60\left(m\right)\)
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có:
a+b=34 và -a+2b=2
=>b=12; a=22
Diện tích la: 12*22=264m2
Giá bán là:
264*15000000=3960000000 đồng