Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Chọn gốc tọa độ tại mặt đất, chiều dương hướng lên trên.
Phương trình vận tốc của vật là v = vo + at = 4 - 10t (m/s).
Phương trình tọa độ của vật là x = xo + vot + 0,5at2 = 4t – 5t2 (m).
Khi vật đạt độ cao cực đại thì vận tốc của vật v = 0 → 4 – 10t = 0
→ Thời gian vật chuyển động đến lúc đạt độ cao cực đại là t = 0,4 s.
Độ cao cực đại vật đạt được là x = 4.0,4 – 5.0,42 = 0,8 m.
Chọn đáp án A
Chọn gốc tọa độ tại mặt đất, chiều dương hướng lên trên.
Phương trình vận tốc của vật là
a. Áp dụng định luật bảo toàn cơ năng cho vị trí ném và vị trí vật có độ cao lớn nhất:
\(mgh_0+\dfrac{1}{2}mv_0^2=mgh_{max}\)
\(\Rightarrow h_{max}=h_0+\dfrac{1}{2g}v_0^2=10+\dfrac{1}{20}.10^2=15\) (m)
b. Tại vị trí vật có \(W_t=W_đ\)
\(\Rightarrow W=2W_t\)
\(\Rightarrow h_{max}=2h\Rightarrow h=\dfrac{h_{max}}{2}=7,5\) (m)
c. Tại vị trí ngay sát mặt đất có \(W_đ=W\)
\(\Rightarrow\dfrac{1}{2}mv_{max}^2=mgh_{max}\)
\(\Rightarrow v_{max}=\sqrt{2gh_{max}}=\sqrt{2.10.10}=14,14\) (m/s)
Vật chỉ chịu tác dụng của trọng lực cơ năng được bảo toàn:
Bảo toàn tại điểm ném W1 và tại điểm chạm đất W2 ( Chọn gốc thế năng tại mặt đất )
\(W_1=W_2\Leftrightarrow\dfrac{1}{2}mv_1^2+mgz=\dfrac{1}{2}mv_2^2\) => z=25(m)
b) Bảo toàn cơ năng tại điểm ném và vị trí cao nhất:
\(W_1=W_3\Leftrightarrow\dfrac{1}{2}mv_1^2+mgz=mgh_{max}\Rightarrow h_{max}=45\left(m\right)\)
Cơ năng vật ban đầu:
\(W=\dfrac{1}{2}mv^2+mgz=\dfrac{1}{2}\cdot m\cdot3^2+m\cdot10\cdot0=\dfrac{9}{2}m\left(J\right)\)
Cơ năng vật tại nơi có độ cao \(h_{max}\) là \(W_1=mgh_{max}\left(J\right)\)
Bảo toàn cơ năng :\(W=W_1\)
\(\Rightarrow\dfrac{9}{2}m=mgh_{max}\Rightarrow h_{max}=0,45m\)
Cơ năng vật tại nơi có \(W_đ=W_t\):
\(W_2=W_đ+W_t=2W_đ=2\cdot\dfrac{1}{2}mv'^2=mv'^2\left(J\right)\)
Bảo toàn cơ năng: \(W=W_2\)
\(\Rightarrow\dfrac{9}{2}m=mv'^2\Rightarrow v'=\dfrac{3\sqrt{2}}{2}\)m/s
a)
Cơ năng tại O (vị trí ném): \(W_o=\dfrac{1}{2}mv_o^2+mgz_o\)
Cơ năng tại B (mặt đất): \(W_B=\dfrac{1}{2}mv_B^2\)
Áp dụng định luật bảo toàn cơ năng tại O và A ta có:
\(W_O=W_B\Leftrightarrow\) \(\dfrac{1}{2}mv_O^2+mgz_o=\dfrac{1}{2}mv_B^2\Leftrightarrow v_O^2=2gh\Rightarrow h=\dfrac{v_B^2-v_O^2}{2g}=25m\)
b) Khi đạt độ cao cực đại thì vtoc vật = 0
\(\Leftrightarrow\dfrac{1}{2}mv_B^2=mgh_{cđ}\Leftrightarrow h_{cđ}=\dfrac{v_B^2}{2g}=45m\)
c) \(W_đ=W_t\Leftrightarrow W_đ=\dfrac{1}{2}W_B\Leftrightarrow\dfrac{1}{2}mv^2=\dfrac{1}{2}.\dfrac{1}{2}mv_B^2\Leftrightarrow v=10\sqrt{2}\left(\dfrac{m}{s}\right)\)
a. Chọn hệ quy chiếu Oxy như hình vẽ
Thời điểm ban đầu
Chiếu lên trục ox có
x 0 = 0 ; v 0 x = v 0 c o s α = 10 2 ( m / s )
Chiếu lên trục oy có
y 0 = 0 ; v 0 y = v 0 s i n α = 10 √ 2 ( m / s )
Xét tại thời điểm t có a x = 0 ; a y = - g
Chiếu lên trục ox có
v x = 10 √ 2 ( m / s ) ; x = 10 √ 2 t
Chiếu lên trục Oy có
v y = 10 √ 2 - 10 t ; y = 45 + 10 √ 2 t - 5 t 2
⇒ y = 45 + x - x 2 40 Vậy vật có quỹ đạo là một Parabol
Khi lên đến độ cao max thì: v y = 0 ⇒ 0 = 10 √ 2 - 10 t ⇒ t = √ 2 ( s )
H m a x = y = 45 + 10 . √ 2 . √ 2 - 5 ( √ 2 ) 2 = 55 ( m )
Khi vật chạm đất thì y = 0 ⇒ 45 + 10 √ 2 t - 5 t 2 = 0 ⇒ t = 4 , 73 ( s )
Vậy sau 4,73s thì vật chạm đất
b. Tầm xa của vật L = x = 10 √ 2 . 4 , 73 ≈ 66 , 89 ( m )
Vận tốc vật khi chạm đất v = v x 2 + v y 2
Với v y = 10 √ 2 - 10 . 4 , 73 = 33 , 16 ( m / s )
⇒ v = √ ( ( 10 √ 2 ) 2 + 33 , 〖 16 〗 2 ) = 36 , 05 ( m / s )
c. Khi vật có độ cao 50 thì
y = 50 = 45 + 10 √ 2 t - 5 t 2 ⇒ t 1 = 2 , 414 ( s ) ; t 2 = 0 , 414 ( s )
Lúc t 1 = 2 , 414 ( s ) ⇒ v 1 = 10 √ 2 - 10 t 1 = 10 √ 2 - 10 . 2 , 414 ≈ - 10 ( m / s )
Lúc t 2 = 0 , 414 ( s ) ⇒ v 2 = 10 √ 2 - 10 t 2 = 10 √ 2 - 10 . 0 , 414 ≈ 10 ( m / s )
Ứng với hai trường hợp vật đi xuống đi lên