K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

Đáp án A

Phương pháp :

Tìm nghiệm phức có phần ảo dương của phương trình z2 – z +1 = 0 bằng MTCT.

Cách giải:

Sử dụng MTCT ta tính được nghiệm phức có phần ảo dương của phương trình trên là

19 tháng 4 2019

19 tháng 12 2017

20 tháng 10 2018

Đáp án A.

Có z . z ' = a a ' − b b ' + a b ' + a ' b i .  

Vậy phần ảo là:  a b ' + b a ' i .

30 tháng 1 2017

20 tháng 4 2017

Đáp án D

z + 2 + i − z ( 1 + i ) = 0 ⇔ ( a + b i ) + 2 + i − a 2 + b 2 ( 1 + i ) = 0 ⇔ a + 2 − a 2 + b 2 + ( b + 1 − a 2 + b 2 ) i = 0 ⇒ a + 2 − a 2 + b 2 = 0 b + 1 − a 2 + b 2 = 0 ⇒ a − b + 1 = 0 ⇒ a = b − 1 ⇒ b + 1 − ( b − 1 ) 2 + b 2 = 0 ⇒ 2 b 2 − 2 b + 1 = b + 1 ⇒ b ≥ − 1 b 2 − 4 b = 0 ⇒ b = 0 b = 4 ⇒ a = − 1     ( L ) a = 3 ⇒ P = 4 + 3 = 7

14 tháng 8 2019

27 tháng 4 2017

Đáp án C

- Nhìn vào hình vẽ ta có phần thực a bị giới hạn  − 2 < a < 2 , b ∈ ℝ  

Chú ý: Cho số phức z = a + bi, điểm M(a;b) trong hệ trục tọa độ vuông góc của mặt phẳng được gọi là điểm biểu diễn số phức z.

18 tháng 8 2018

Đáp án A

Phương trình z 2 − z + 2017 2 = 0 ⇔ 4 z 2 − 4 z + 2017 = 0

⇔ 2 z − 1 2 = 2016 i 2 ⇔ z 1 = 1 − i 2016 2 z 2 = 1 + i 2016 2

Ta có z − z 1 + z − z 2 ≥ z − z 1 − z − z 2 = z − z 2 ≥ z 1 − z 2 − z − z 1 = 2016 − 1

Vật giá trị nhỏ nhất của biểu thức P là  P min = 2016 − 1