K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

Gọi M(1;0) thuộc (d)

Theo đề, ta có: \(\overrightarrow{IM'}=k\cdot\overrightarrow{IM}\)

=>\(\left\{{}\begin{matrix}x_{M'}-1=k\cdot\left(1-1\right)=0\\y_{M'}=k\cdot\left(0-0\right)=0\end{matrix}\right.\)

=>M'(1;0)

Thay M' vào x+2y+c=0, ta được:

1+c=0

=>c=-1

Số phát biểuđúng:1.     Qua phép vị tự có tỉ số  k ≠ 0   , đường thẳng đi qua tâm vị tự sẽ biến thành chính nó2.     Qua phép vị tự có tỉ số k ≠ 0 , đường tròn có tâm là tâm vị tự sẽ biến thành chính nó.3.     Qua phép vị tự có tỉ số k ≠ 1 , không có đường tròn nào biến thành chính nó.4.     Qua phép vị tự V(O;1), đường tròn tâm O sẽ biến...
Đọc tiếp

Số phát biểuđúng:

1.     Qua phép vị tự có tỉ số  k ≠ 0   , đường thẳng đi qua tâm vị tự sẽ biến thành chính nó

2.     Qua phép vị tự có tỉ số k ≠ 0 , đường tròn có tâm là tâm vị tự sẽ biến thành chính nó.

3.     Qua phép vị tự có tỉ số k ≠ 1 , không có đường tròn nào biến thành chính nó.

4.     Qua phép vị tự V(O;1), đường tròn tâm O sẽ biến thành chính nó.

5.     Phép vị tự tỉ số k biến đường thẳng thành đường thẳng song song hoặc trùng với đường thẳng đó

6.     Phép vị tự tỉ số k biến đoạn thẳng thành đoạn thẳng mà độ dài được nhân lên với hệ số k

7.     Trong phép vị tự tâm O, tỉ số k, nếu k < 0 thì điểm M và ảnh của nó ở về hai phía đối với tâm O.

8.     Mọi phép dời hình đều là phép đồng dạng với tỉ số k = 1

9.     Phép hợp thành của một phép vị tự tỉ số k và một phép đối xứng tâm là phép đồng dạng tỉ số

10.    Hai đường tròn bất kì luôn có phép vị tự biến đường này thành đường kia

11.    Khi k = 1 , phép vị tự là phép đồng nhất

12.    Phép vị tự biến tứ giác thành tứ giác bằng nó

13.    Khi k = 1, phép đồng dạng là phép dời hình

14.    Phép đối xứng tâm là phép đồng dạng tỉ số k = 1

A.9

B.10

C.11

D.12

1
15 tháng 8 2017

Đáp án C

Những phát biểuđúng: 1; 4; 5; 6; 7; 8; 9; 10; 11; 13; 14

2. Qua phép vị tự có tỉ số , đường tròn có tâm là tâm vị tự sẽ biến thành 1 đường tròn đồng tâm với đường tròn ban đầu và có bán kính = k. bán kính đường tròn ban đầu.

3. Qua phép vị tự có tỉ số  đường tròn biến thành chính nó.

12. Phép vị tự với tỉ số k = biến tứ giác thành tứ giác bằng nó

9 tháng 1 2017

Phương trình đường thẳng d: x - y - 1= 0

Lấy M(x; y) thuộc d

Phép vị tự tâm O(0; 0) tỉ số k = 3 biến điểm M thành M’(x’; y’) thì  O M ' → = 3 O M → ⇔ x ' = 3 x y ' = 3 y ⇔ x = 1 3 x ' y = 1 3 y '

Phép đối xứng trục Ox biến M’(x’; y’) thành M’’(x’’; y’’)

Thay vào phương trình d ta được: ⇔ x ' ' = x ' y ' ' = − y ' ⇔ x = 1 3 x ' ' y = − 1 3 y ' '

Hay x’’ + y’’ - 3 = 0

Vậy phương trình đường thẳng d’: x + y - 3 = 0.

Đáp án B

Câu 1:

Theo đề, ta có: \(\overrightarrow{IM'}=-2\cdot\overrightarrow{IM}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=-2\cdot\left(-7-2\right)=18\\y-3=-2\cdot\left(2-3\right)=2\end{matrix}\right.\Leftrightarrow M'\left(20;5\right)\)

 

Với cái đề này thì cho phép mình xin tạm hiểu là phép \(V_{\left(I;2\right)}\left(A\right)=A'\) và B' là ảnh của A' qua phép đối xứng tâm B nha

Tọa độ A' là:

\(\overrightarrow{IA'}=2\cdot\overrightarrow{IA}\)

=>\(\left\{{}\begin{matrix}x_{A'}-2=2\cdot\left(1-2\right)=-2\\y_{A'}+1=2\left(1+1\right)=4\end{matrix}\right.\Leftrightarrow A'\left(0;3\right)\)

Theo đề, ta có: \(\left\{{}\begin{matrix}x_B=\dfrac{x_{A'}+x_{B'}}{2}\\y_B=\dfrac{y_{A'}+y_{B'}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_{B'}+0=2\cdot\left(-3\right)=-6\\y_{B'}+3=2\cdot1=2\end{matrix}\right.\Leftrightarrow B'\left(-6;-1\right)\)

25 tháng 11 2018

V ( 0 ; 1 / 2 ) ( M ( 4 ; 2 ) )   =   M ' ( 2 ; 1 ) ;     Đ O x ( M ' ( 2 ; 1 ) )   =   M " ( 2 ; - 1 ) .

Đáp án A.