Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
V ( 0 ; 1 / 2 ) ( M ( 4 ; 2 ) ) = M ' ( 2 ; 1 ) ; Đ O x ( M ' ( 2 ; 1 ) ) = M " ( 2 ; - 1 ) .
Đáp án A.
Gọi tam giác A'B'C' là ảnh của tam giác ABC qua phép biến hình trên.
(e)Phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép vị tự tâm O tỉ số k = -2
+) Qua phép đối xứng qua trục Oy biến tam giác ABC thành tam giác A 1 B 1 C 1
Do đó, tọa độ A 1 - 1 ; 1 ; B 1 0 ; 3 v à C 1 - 2 ; 4 .
+) Qua phép vị tự tâm O tỉ số k = -2 biến tam giác A 1 B 1 C 1 thành tam giác A 2 B 2 C 2
Biểu thức tọa độ :
Tương tự; B 2 0 ; - 6 v à C 2 4 ; - 8
Vậy qua phép đối xứng trục Oy và phép vị tự tâm O tỉ số k = -2, biến các điểm A, B, C lần lượt thành
A 2 2 ; - 2 ; B 2 0 ; - 6 v à C 2 4 ; - 8 .
Phương trình đường thẳng d: x - y - 1= 0
Lấy M(x; y) thuộc d
Phép vị tự tâm O(0; 0) tỉ số k = 3 biến điểm M thành M’(x’; y’) thì O M ' → = 3 O M → ⇔ x ' = 3 x y ' = 3 y ⇔ x = 1 3 x ' y = 1 3 y '
Phép đối xứng trục Ox biến M’(x’; y’) thành M’’(x’’; y’’)
Thay vào phương trình d ta được: ⇔ x ' ' = x ' y ' ' = − y ' ⇔ x = 1 3 x ' ' y = − 1 3 y ' '
Hay x’’ + y’’ - 3 = 0
Vậy phương trình đường thẳng d’: x + y - 3 = 0.
Đáp án B
mk làm câu a bn làm câu b tương tự cho quen nha .
a) đặc đường thẳng \(\Delta\) là đường thẳng biểu diển trục đối xứng cần tìm .
ta có : \(\Delta\) là đường trung trực của \(AA'\)
\(\Rightarrow\Delta\) đi qua trung điểm \(I\left(2;3\right)\) của \(AA'\) và có véc tơ pháp tuyến là \(\overrightarrow{AA'}=\left(0;4\right)\)
\(\Rightarrow\left(\Delta\right):0\left(x-2\right)+4\left(y-3\right)=0\Leftrightarrow4y-12=0\)
vậy trục đối xứng biến \(A\) thành \(A'\) là \(\left(\Delta\right):4y-12=0\)
V V ( I ; - 2 ) ( M ( - 1 ; 0 ) ) = M ' ( 8 ; 3 ) ; Đ O x ( M ' ) = M " ( 8 ; - 3 )
Đáp án A
a. Các phép biến một điểm A thành chính nó:
Phép đồng nhất:
- Phép tịnh tiến theo vectơ 0 .
- Phép quay tâm A, góc φ = 0º.
- Phép đối xứng tâm A.
- Phép vị tự tâm A, tỉ số k = 1.
- Ngoài ra còn có:
- Phép đối xứng trục mà trục đi qua A.
b. Các phép biến hình biến điểm A thành điểm B:
- Phép tịnh tiến theo vectơ AB .
- Phép đối xứng qua đường trung trực của đoạn thẳng AB.
- Phép đối xứng tâm qua trung điểm của AB.
- Phép quay mà tâm nằm trên đường trung trực của AB.
- Phép vị tự mà tâm là điểm chia trong hoặc chia ngoài đoạn thẳng AB theo tỉ số k.
c. Phép tịnh tiến theo vectơ v //d.
- Phép đối xứng trục là đường thẳng d’ ⊥ d.
- Phép đối xứng tâm là điểm A ∈ d.
- Phép quay tâm là điểm A ∈ d, góc quay φ =180º.
- Phép vị tự tâm là điểm I ∈ d.
Đáp án C
Những phát biểuđúng: 1; 4; 5; 6; 7; 8; 9; 10; 11; 13; 14
2. Qua phép vị tự có tỉ số , đường tròn có tâm là tâm vị tự sẽ biến thành 1 đường tròn đồng tâm với đường tròn ban đầu và có bán kính = k. bán kính đường tròn ban đầu.
3. Qua phép vị tự có tỉ số đường tròn biến thành chính nó.
12. Phép vị tự với tỉ số k = biến tứ giác thành tứ giác bằng nó
Với cái đề này thì cho phép mình xin tạm hiểu là phép \(V_{\left(I;2\right)}\left(A\right)=A'\) và B' là ảnh của A' qua phép đối xứng tâm B nha
Tọa độ A' là:
\(\overrightarrow{IA'}=2\cdot\overrightarrow{IA}\)
=>\(\left\{{}\begin{matrix}x_{A'}-2=2\cdot\left(1-2\right)=-2\\y_{A'}+1=2\left(1+1\right)=4\end{matrix}\right.\Leftrightarrow A'\left(0;3\right)\)
Theo đề, ta có: \(\left\{{}\begin{matrix}x_B=\dfrac{x_{A'}+x_{B'}}{2}\\y_B=\dfrac{y_{A'}+y_{B'}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_{B'}+0=2\cdot\left(-3\right)=-6\\y_{B'}+3=2\cdot1=2\end{matrix}\right.\Leftrightarrow B'\left(-6;-1\right)\)