K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

a, \(C_9^3.C_6^3.C_3^3=1680\) cách chia

b, \(\left(C^2_6+C^1_3\right)\left(C^2_4+C^1_2\right).\left(C^2_2+C^1_1\right)=288\) cách chia

c, \(C^3_6.C^3_3=20\) cách chia

NV
14 tháng 7 2021

Mỗi tổ ít nhất 2 nữ \(\Rightarrow\) ta có 3 trường hợp: (2;2;3); (2;3;2); (3;2;2)

TH1: (2;2;3)

Tổ 1: chọn 2 nữ từ 7 nữ có \(C_7^2\) cách, chọn 8 nam từ 26 nam có \(C_{26}^8\) cách

Tổ 2: chọn 2 nữ từ 5 nữ còn lại: \(C_5^2\) ; chọn 9 nam từ 18 nam còn lại: \(C_{18}^9\)

Tổ 3: chọn 3 nữ từ 3 nữ còn lại: \(C_3^3\) ; chọn 9 nam từ 9 nam còn lại: \(C_9^9\)

\(\Rightarrow C_7^2.C_{26}^8+C_5^3.C_{18}^8+C_2^2.C_{10}^{10}\)

Hoàn toàn tương tự, ở TH2 ta được số cách:

\(C_7^2.C_{26}^8+C_5^3.C_{18}^9+C_2^2.C_9^9\)

TH3 ta được số cách: \(C_7^3.C_{26}^7+C_4^2.C_{19}^9+C_2^2.C_{10}^{10}\)

Cộng 3 trường hợp lại ta được kết quả cần tìm

9 tháng 9 2018

Số cách chia lớp thành 3 tổ thỏa yêu cầu có 3 trường hợp

* TH1: Tổ 1 có 3 nữ, 7 nam có  cách chọn

            Tổ 2 có 2 nữ, 9 nam có  cách chọn

            Tổ 3 có 2 nữ, 10 nam có  cách chọn

Vậy có  cách chia thành 3 tổ trong TH này

* TH2: Tổ 2 có 3 nữ và hai tổ còn lại có 2 nữ,  tương tự tính được  cách chia.

* TH3: Tổ 3 có 3 nữ và hai tổ còn lại có 2 nữ,  tương tự tính được  cách chia.

Vậy có tất cả  cách chia

Chọn D.

6 tháng 12 2019

Số cách chia lớp thành 3 tổ thỏa yêu cầu có 3 trường hợp

* TH1: Tổ 1 có 3 nữ, 7 nam có C 7 3 C 26 7  cách chọn 

            Tổ 2 có 2 nữ, 9 nam có   C 4 2 C 19 9 cách chọn

            Tổ 3 có 2 nữ, 10 nam có C 2 2 C 10 10  cách chọn

Vậy có   C 7 3 C 26 7 C 4 2 C 19 9  cách chia thành 3 tổ trong TH này

* TH2: Tổ 2 có 3 nữ và hai tổ còn lại có 2 nữ,  tương tự tính được C 7 2 C 26 8 C 5 3 C 18 8  cách chia.

* TH3: Tổ 3 có 3 nữ và hai tổ còn lại có 2 nữ,  tương tự tính được   C 7 2 C 26 8 C 5 2 C 18 9  cách chia.

Vậy có tất cả    C 7 3 C 26 7 C 4 2 C 19 9 + C 7 2 C 26 8 C 5 3 C 18 8 + C 7 2 C 26 8 C 5 2 C 18 9 cách chia.

Chọn  D.

3 tháng 4 2018

NV
10 tháng 3 2023

a. Có \(C_6^3\) cách chọn 3 nam từ 6 nam

b. 

Chọn 2 nam từ 6 nam và 3 nữ từ 9 nữ để lập tổ 1 có: \(C_6^2.C_9^3\) cách

Chọn 2 nam từ 4 nam còn lại và 3 nữ từ 6 nữ còn lại để lập tổ 2 có: \(C_4^2.C_6^3\) cách

Chọn 2 nam từ 2 nan còn lại và 3 nữ từ 3 nữ còn lại: \(C_2^2.C_3^3\) cách

\(\Rightarrow C_6^2.C_9^3+C_4^2.C_6^3+C_2^2.C_3^3\) cách thỏa mãn chia 3 tổ

27 tháng 12 2020

Số phần tử của không gian mẫu là n(Ω) = 6! 

Gọi A là biến cố 'nam ngồi đối diện nữ.'

Chọn chỗ cho học sinh nam thứ nhất có 6 cách.

Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)

Chọn chỗ cho học sinh nam thứ 3 có  2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ hai).

Xếp chỗ cho 3 học sinh nữ : 3! cách.

=> n(A) =  6.4.2.3! = 288

Vậy P(A) = 288/6!

NV
7 tháng 10 2020

Do trong tổ chỉ có 3 nữ nên trong 4 học sinh luôn có ít nhất 1 nam bất kể cách chọn

Do đó số cách chọn thỏa mãn: \(C_9^4=...\)

19 tháng 2 2018

Đáp án A

Ta thấy trong các đối tượng ta cần chọn, thì chỉ có lớp phó phong trào không đòi hỏi điều kiện gì nên ta sẽ chọn ở bước sau cùng

Do đó chọn 1 ban cán sự ta cần thực hiện các bước sau

Bước 1: Chọn1 bạn nữ là lớp trưởng có 15 cách

Bước 2: Chọn 1 bạn nam làm lớp phó học tập có 18 cách

Bước 3: Chọn1 bạn nữ là thủ quỹ có 14 cách

Bước 4: Chọn 1 người trong số còn lại làm lớp phó phong trào có 30 cách

Vậy tất cả có cách cử 1 ban cán sự

30 tháng 10 2020

TH1. Tổ công tác gồm 2 nam và 3 nữ có số cách chọn \(C^2_{12}.C^3_{18}\)

TH2. Tổ công tác gồm 1 nam và 4 nữ có số cách chọn \(C^1_{12}.C^4_{18}\)

TH3. Tổ công tác chỉ gồm 5 nữ có số cách chọn \(C^5_{18}\)

Tổng số cách là: \(C^2_{12}.C^3_{18}\)\(C^1_{12}.C^4_{18}\)\(C^5_{18}\)= bấm máy nhé