Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mỗi tổ ít nhất 2 nữ \(\Rightarrow\) ta có 3 trường hợp: (2;2;3); (2;3;2); (3;2;2)
TH1: (2;2;3)
Tổ 1: chọn 2 nữ từ 7 nữ có \(C_7^2\) cách, chọn 8 nam từ 26 nam có \(C_{26}^8\) cách
Tổ 2: chọn 2 nữ từ 5 nữ còn lại: \(C_5^2\) ; chọn 9 nam từ 18 nam còn lại: \(C_{18}^9\)
Tổ 3: chọn 3 nữ từ 3 nữ còn lại: \(C_3^3\) ; chọn 9 nam từ 9 nam còn lại: \(C_9^9\)
\(\Rightarrow C_7^2.C_{26}^8+C_5^3.C_{18}^8+C_2^2.C_{10}^{10}\)
Hoàn toàn tương tự, ở TH2 ta được số cách:
\(C_7^2.C_{26}^8+C_5^3.C_{18}^9+C_2^2.C_9^9\)
TH3 ta được số cách: \(C_7^3.C_{26}^7+C_4^2.C_{19}^9+C_2^2.C_{10}^{10}\)
Cộng 3 trường hợp lại ta được kết quả cần tìm
Số cách chia lớp thành 3 tổ thỏa yêu cầu có 3 trường hợp
* TH1: Tổ 1 có 3 nữ, 7 nam có cách chọn
Tổ 2 có 2 nữ, 9 nam có cách chọn
Tổ 3 có 2 nữ, 10 nam có cách chọn
Vậy có cách chia thành 3 tổ trong TH này
* TH2: Tổ 2 có 3 nữ và hai tổ còn lại có 2 nữ, tương tự tính được cách chia.
* TH3: Tổ 3 có 3 nữ và hai tổ còn lại có 2 nữ, tương tự tính được cách chia.
Vậy có tất cả cách chia
Chọn D.
Số cách chia lớp thành 3 tổ thỏa yêu cầu có 3 trường hợp
* TH1: Tổ 1 có 3 nữ, 7 nam có C 7 3 C 26 7 cách chọn
Tổ 2 có 2 nữ, 9 nam có C 4 2 C 19 9 cách chọn
Tổ 3 có 2 nữ, 10 nam có C 2 2 C 10 10 cách chọn
Vậy có C 7 3 C 26 7 C 4 2 C 19 9 cách chia thành 3 tổ trong TH này
* TH2: Tổ 2 có 3 nữ và hai tổ còn lại có 2 nữ, tương tự tính được C 7 2 C 26 8 C 5 3 C 18 8 cách chia.
* TH3: Tổ 3 có 3 nữ và hai tổ còn lại có 2 nữ, tương tự tính được C 7 2 C 26 8 C 5 2 C 18 9 cách chia.
Vậy có tất cả C 7 3 C 26 7 C 4 2 C 19 9 + C 7 2 C 26 8 C 5 3 C 18 8 + C 7 2 C 26 8 C 5 2 C 18 9 cách chia.
Chọn D.
a. Có \(C_6^3\) cách chọn 3 nam từ 6 nam
b.
Chọn 2 nam từ 6 nam và 3 nữ từ 9 nữ để lập tổ 1 có: \(C_6^2.C_9^3\) cách
Chọn 2 nam từ 4 nam còn lại và 3 nữ từ 6 nữ còn lại để lập tổ 2 có: \(C_4^2.C_6^3\) cách
Chọn 2 nam từ 2 nan còn lại và 3 nữ từ 3 nữ còn lại: \(C_2^2.C_3^3\) cách
\(\Rightarrow C_6^2.C_9^3+C_4^2.C_6^3+C_2^2.C_3^3\) cách thỏa mãn chia 3 tổ
Số phần tử của không gian mẫu là n(Ω) = 6!
Gọi A là biến cố 'nam ngồi đối diện nữ.'
Chọn chỗ cho học sinh nam thứ nhất có 6 cách.
Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)
Chọn chỗ cho học sinh nam thứ 3 có 2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ hai).
Xếp chỗ cho 3 học sinh nữ : 3! cách.
=> n(A) = 6.4.2.3! = 288
Vậy P(A) = 288/6!
Do trong tổ chỉ có 3 nữ nên trong 4 học sinh luôn có ít nhất 1 nam bất kể cách chọn
Do đó số cách chọn thỏa mãn: \(C_9^4=...\)
Đáp án A
Ta thấy trong các đối tượng ta cần chọn, thì chỉ có lớp phó phong trào không đòi hỏi điều kiện gì nên ta sẽ chọn ở bước sau cùng
Do đó chọn 1 ban cán sự ta cần thực hiện các bước sau
Bước 1: Chọn1 bạn nữ là lớp trưởng có 15 cách
Bước 2: Chọn 1 bạn nam làm lớp phó học tập có 18 cách
Bước 3: Chọn1 bạn nữ là thủ quỹ có 14 cách
Bước 4: Chọn 1 người trong số còn lại làm lớp phó phong trào có 30 cách
Vậy tất cả có cách cử 1 ban cán sự
TH1. Tổ công tác gồm 2 nam và 3 nữ có số cách chọn \(C^2_{12}.C^3_{18}\)
TH2. Tổ công tác gồm 1 nam và 4 nữ có số cách chọn \(C^1_{12}.C^4_{18}\)
TH3. Tổ công tác chỉ gồm 5 nữ có số cách chọn \(C^5_{18}\)
Tổng số cách là: \(C^2_{12}.C^3_{18}\)+ \(C^1_{12}.C^4_{18}\)+ \(C^5_{18}\)= bấm máy nhé
a, \(C_9^3.C_6^3.C_3^3=1680\) cách chia
b, \(\left(C^2_6+C^1_3\right)\left(C^2_4+C^1_2\right).\left(C^2_2+C^1_1\right)=288\) cách chia
c, \(C^3_6.C^3_3=20\) cách chia