K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2019

Chọn D

Số phần tử của không gian mẫu 

Gọi biến cố A: “Chọn được 1 bạn nam và 1 bạn nữ để phân công trực nhật.”

Ta có 

Vậy 

17 tháng 3 2018

Trường hợp 1: Chọn 3 nữ, 2 nam  cách chọn

Trường hợp 2: Chọn 4 nữ, 1 nam có   cách chọn

Do đó có  cách chọn.

Chọn B.

4 tháng 12 2017

Đáp án B

Phương pháp giải: Áp dụng các quy tắc đếm cơ bản

Lời giải:

Chọn 2 học sinh trong 20 học sinh có C 20 2 = 190 ⇒ n ( Ω ) = 190 .  

Gọi X là biến cố 2 học sinh được chọn trong đó có cả nam và nữ

Chọn 1 học sinh nam trong 8 nam có 8 cách, chọn 1 học sinh nữ trong 12 nữ có 12 cách.

Suy ra số kết quả thuận lợi cho biến cố X là n(X) = 8.12 = 96.

Vậy  P = n ( X ) N ( Ω ) = 48 95 .

26 tháng 2 2018

Đáp án : D

Ta cần thực hiện 2 công việc:

Chọn một học sinh nam: có 20 cách chọn.

Chọn một học sinh nữ: có 22 cách chọn.

Theo quy tắc nhân: số cách chọn là 20.22=440 cách chọn.

5 tháng 2 2018

29 tháng 12 2018

Đáp án D.

10 tháng 9 2019

Chọn C

Có 20 cách chọn bạn học sinh nam và 24 cách chọn bạn học nữ.

Vậy có 20×24= 480 cách chọn hai bạn (1 nam 1 nữ) tham gia đội cờ đỏ

24 tháng 9 2021

a) Nếu trong \(5\) học sinh phải có ít nhất \(2\) học sinh nữ và \(2\) học sinh nam thì có \(2\) trường hợp :

\(2\) nam \(3\) nữ, có : \(C^2_{10}.C^3_{10}\) cách: 

\(3\) nam và \(2\) nữ, có : \(C^3_{10}.C^2_{10}\)  cách:

Vậy tất cả có : \(2.C^2_{10}.C^3_{10}=10800\) cách.

b) Nếu trong \(5\)  học sinh phải có ít nhất \(1\) học sinh nữ và \(1\) học sinh nam thì có 4 trường hợp :

\(1\) nam và \(4\) nữ, có: \(C^1_{10}.C^4_{10}\) cách.

\(2\) nam và \(3\) , có : \(C^2_{10}.C^3_{10}\) cách.

Còn lại bn tự lm nha, mỏi tay quá

27 tháng 12 2019

Đáp án là A

Nhóm học sinh 3 người được chọn (không phân biệt nam, nữ - công việc) là một tổ hợp chập 3 của 40 (học sinh).

Vì vậy, số cách chọn nhóm học sinh là c 40 3 = 40 ! 37 ! . 3 ! = 9880