Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi hình lăng trụ tam giác ABC.A'B'C' có H là hình chiếu vuông góc của A' lên trên mặt phẳng đáy (ABC).
Ta có A B = 3 , A A ' = 2 3 nên A ' H = A A ' . sin 30 ° = 3
Thể tích khối lăng trụ V A B C . A ' B ' C ' = 3 2 3 4 . 3 = 27 4
Gọi H là trung điểm BC \(\Rightarrow AH\perp BC\) và \(AH=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)
Áp dụng định lý Pitago cho tam gaics vuông AA'H:
\(A'H=\sqrt{A'A^2-AH^2}=\dfrac{3a}{2}\)
\(V=A'A.S_{ABC}=\dfrac{3a}{2}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{3a^3\sqrt{3}}{8}\)
Thể tích của hình lăng trụ đã cho: V = \(\dfrac{a^2\sqrt{3}}{4}\).a = \(\dfrac{a^3\sqrt{3}}{4}\).
Tổng diện tích các mặt bên (diện tích xung quanh) của lăng trụ: Sxq = 3a.a = 3a2.
Đáp án A