Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Gọi tên lăng trụ tam giác đều là ABC.A'B'C'.
Ta có: S A B C = a 2 3 4
Theo đề bài ta có:
3 S A B B ' A ' = 3 a 2 ⇔ A B . A A ' = a 2 ⇔ A A ' = a
Ta có thể tích khối lăng trụ ABC.A'B'C' là:
V = A A ' . S A B C = a . a 2 3 4 = a 3 3 4
\(V=2a.\dfrac{\left(2a\right)^2\sqrt{3}}{4}=2a^3\sqrt{3}\)
Đáp án B
Từ giả thiết ta có đường cao của hình trụ là độ dài cạnh bên của lăng trụ và bán kính đường tròn đáy là bán kính đường tròn ngoại tiếp tam giác ABC nên ta có
Đáp án B
Ta có mặt bên là hình chữ nhật có diện tích bằng 3 a 2
⇒ chiều cao của lăng trụ là 3 a 2 a = 3 a .
Có diện tích đáy hình trụ bằng S = πa 2
Vậy V = 3 a . πa 2 = 3 πa 2 .
Chọn A
Xét hình lăng trụ đều (H) đã cho có đáy là đa giác đều n đỉnh. Xét điểm trong I của hình lăng trụ đều (H) đã cho. Khi đó nối I với các đỉnh của (H) ta được n+2 khối chóp có đỉnh là I, trong đó có hai khối chóp có đỉnh là I và mặt đáy là mặt đáy của (H); và n khối chóp có đỉnh I và mặt đáy là mặt bên của (H). Diện tích mỗi mặt
đáy của (H) bằng S; diện tích mỗi mặt bên của (H) bằng ah. Gọi h1, h2, .., hn, hn+1, hn2 lần lượt là khoảng cách từ I đến các mặt bên của (H) và các mặt đáy của (H). Vậy theo công thức tính thể tích của khối lăng trụ và khối chóp ta có:
Chú ý tổng khoảng cách từ I đến hai mặt đáy của (H) là
Thể tích của hình lăng trụ đã cho: V = \(\dfrac{a^2\sqrt{3}}{4}\).a = \(\dfrac{a^3\sqrt{3}}{4}\).
Tổng diện tích các mặt bên (diện tích xung quanh) của lăng trụ: Sxq = 3a.a = 3a2.