K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

Chọn C

Lời giải. Ta có  n ( Ω ) = C 10 3 n ( A ¯ ) = C 8 3

⇒ P = 1 - C 8 3 C 10 3 = 8 15

Gọi A là biến cố " 3 chữ số trên 3 chiếc thẻ được lấy ra có thể ghép thành một số chia hết cho 5".

biến cố A ¯ " 3 thẻ lấy ra không có thẻ mang chữ số 0 và cũng không có thẻ mang chữ số 5"

nên có C 8 3  cách

26 tháng 12 2021

Gọi T là biến cố "Lấy được thẻ có ghi số chia hết cho 3".

\(\left|\Omega\right|=C^2_{17}\)

TH1: Lấy được 1 thẻ có ghi số chia hết cho 3.

\(\Rightarrow\) Có \(C^1_5.C^1_{12}\) cách lấy.

TH2: Lấy được 2 thẻ có ghi số chia hết cho 3.

\(\Rightarrow\) Có \(C^2_5\) cách lấy.

\(\Rightarrow\left|\Omega_T\right|=C^1_5.C^1_{12}+C^2_5\)

\(\Rightarrow P\left(T\right)=\dfrac{\left|\Omega_T\right|}{\left|\Omega\right|}=\dfrac{C^1_5.C^1_{12}+C^2_5}{C^2_{17}}=\dfrac{35}{68}\)

26 tháng 12 2021

undefined

NV
23 tháng 10 2020

Đề bài ko rõ ràng lắm nhỉ. Ví dụ lấy ra 3 thẻ theo thứ tự là 0;1;2 có thỏa mãn ko? Hay phải theo thứ tự là 210 hoặc 120?

Ko quan tâm thứ tự thì:

- Lấy ra 1 thẻ chia hết cho 5: có 2 cách (0;5)

- Lấy ra 2 thẻ bất kì từ 9 thẻ còn lại: có \(C_9^2=36\) cách

Vậy có \(2.36=72\) cách

10 tháng 3 2019

Đáp án C

Rút ngẫu nhiên 3 thẻ trong 15 thẻ có  C 15 3 cách =>  n ( Ω ) = C 15 3 = 455 .

Gọi X là biến cố “ tổng ba số ghi trên ba thẻ rút được". Khi đó  1 ≤ x , y ≤ 15 x + y + z ⋮ 3

Từ số 1 đến số 15 gồm 5 số chia hết cho 3 (N1), 5 số chia hết cho 3 dư 1 (N2) và 5 số chia hết cho 3 dư 2 (N3).

TH1: 2 số x, y, z thuộc cùng 1 loại N1, N2 hoặc N3 => có  C 5 3 + C 5 3 + C 5 3 = 30 cách.

TH2: 3 số x, y, z mỗi số thuộc 1 loại => có  C 5 1 + C 5 1 + C 5 1 = 125 cách.

=> Số kết quả thuận lợi cho biến cố X là n(X) = 30 + 125 = 155.

Vậy  P = n ( X ) n ( Ω ) = 31 91 .

27 tháng 3 2017

31 tháng 7 2019

6 tháng 12 2021

1.

\(\left|\Omega\right|=15\)

a, \(P\left(A\right)=\dfrac{7}{15}\)

b, \(P\left(B\right)=\dfrac{2}{5}\)

c, \(P\left(C\right)=\dfrac{3}{5}\)

6 tháng 12 2021

2.

\(\left|\Omega\right|=C^5_{18}\)

a, \(\left|\Omega_A\right|=C^5_5+C^5_6+C^5_7\)

\(P\left(B\right)=\dfrac{C^5_5+C^5_6+C^5_7}{C^5_{18}}=\dfrac{1}{306}\)

b, TH1: 2 bi đỏ, 1 bi xanh, 2 bi vàng

\(\Rightarrow\) Có \(C^2_6.C^1_5.C^2_7\) cách lấy.

TH2: 2 bi đỏ, 2 bi xanh, 1 bi vàng

\(\Rightarrow\) Có \(C^2_6.C^2_5.C^1_7\) cách lấy.

\(\Rightarrow\left|\Omega_C\right|=C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7\)

\(\Rightarrow P\left(C\right)=\dfrac{C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7}{C^5_{18}}=\dfrac{10}{51}\)

c, \(\overline{D}\) là biến cố không lấy ra bi xanh nào.

\(\left|\Omega_{\overline{D}}\right|=C^5_{13}\)

\(\Rightarrow P\left(\overline{D}\right)=\dfrac{C^5_{13}}{C^5_{18}}=\dfrac{143}{952}\)

\(\Rightarrow P\left(D\right)=1-\dfrac{143}{952}=\dfrac{809}{952}\)

25 tháng 7 2017

Đáp án D

Các trường hợp thẻ lấy thỏa mãn đề bài là 3, 9, 15

Suy ra xác suất lấy được thẻ đó là  3 20 = 0 , 15 .

4 tháng 5 2018

B = {5,10,15,20,25,30}, n(B) = 6

⇒P(B) =6/30 =1/5

Chọn đáp án là B

Nhận xét: học sinh có thể nhầm với số thẻ và số ghi trên thẻ, hoặc vận dụng nhầm công thức P(A) =(n(Ω))/(n(A)) dẫn đến các phương án khác còn lại.