K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

Chọn D

26 tháng 8 2018

Chọn D

Chọn ngẫu nhiên một quả trong 30 quả có 30 cách. Vậy n ( Ω ) = 30.

Gọi A là biến cố: “lấy được quả cầu màu xanh”.

Ta có n(A) = 20 => P(A) = 2 3

Gọi B là biến cố: “lấy được quả cầu ghi số lẻ”.

Ta có n(B) = 15 => P(B) = 1 2 .

Số quả cầu vừa màu xanh vừa ghi số lẻ: 10 (quả).

Xác suất để lấy được quả cầu vừa màu xanh vừa ghi số lẻ:

Xác suất để lấy được quả cầu màu xanh hay ghi số lẻ:


17 tháng 12 2017

Rõ ràng trong hộp có 30 quả với 15 quả ghi số chẵn, 10 quả màu đỏ, 5 quả màu đỏ ghi số chẵn, 25 quả màu xanh hoặc ghi số lẻ. Vậy theo định nghĩa

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trong đó A, B, C, D là các biến cố tương ứng với các câu a), b), c) ,d).

18 tháng 5 2017

Trong hộp có 30 quả với 15 quả ghi số chẵn, 10 quả mầu đỏ, 5 quả mầu đỏ ghi số chẵn, 25 quả mầu xanh hoặc ghi số lẻ. Vậy theo định nghĩa :

a) \(P\left(A\right)=\dfrac{15}{30}=\dfrac{1}{2}\)

b) \(P\left(B\right)=\dfrac{10}{30}=\dfrac{1}{3}\)

c) \(P\left(C\right)=\dfrac{5}{30}=\dfrac{1}{6}\)

d) \(P\left(D\right)=\dfrac{25}{30}=\dfrac{5}{6}\)

NV
16 tháng 11 2021

Không gian mẫu: \(C_{15}^3=455\)

Số cách chọn 3 quả sao cho vừa khác màu vừa khác số:

\(4.4.4=64\)

Xác suất: \(P=\dfrac{64}{455}\)

16 tháng 11 2021

g

\(n\left(\Omega\right)=C^3_{30}=4060\)

n(A)\(C^1_{15}\cdot C^2_{15}=1575\)

=>P=1575/4060=45/116

VT
19 tháng 12 2022

1) \(\left(1+x\right)^6=\sum\limits^6_{k=0}C^k_6x^k\)

Số hạng chứa \(x^4\) có \(k=4\)

Hệ số của \(x^4\) trong khai triển là: \(C_6^4=15\).

2) 

\(n\left(\Omega\right)=C_{20}^2=190\)

A: "Hai quả được chọn khác màu"

\(\overline{A}\): "Hai quả được chọn cùng màu".

\(n\left(\overline{A}\right)=C_{15}^2+C_5^2=115\)

\(n\left(A\right)=190-115=75\)

\(P\left(A\right)=\dfrac{75}{190}=\dfrac{15}{38}\)