K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
25 tháng 12 2022

- Đếm số cách để A và B ngồi cạnh nhau, C ngồi vị trí bất kì: 

Coi A, B là một người, có \(2!\) cách xếp vị trí A, B. 

Khi đó ta xếp vị trí của 9 người: \(9!\).

Có tổng số cách xếp là: \(2!.9!\).

- Đếm số cách để A và B ngồi cạnh nhau, C ngồi cạnh A. 

Coi A, B, C là một người. Có 2 cách xếp thỏa mãn là CAB, BAC. 

Khi đó ta xếp vị trí của \(8\) người: \(8!\).

Có số cách xếp là: \(2.8!\)

Vậy số cách xếp để A và B ngồi cạnh nhau, A và C không ngồi cạnh nhau là \(2!.9!-2.8!\).

12 tháng 12 2020

Đại biểu thứ nhất có 8 cách chọn ghế

Đại biểu thứ 2 có 7 cách chọn ghế

Đại biểu thứ 3 có 6 cách

Thứ 4 có 5 cách

Thứ 5 có 4 cách

=> có 8.7.6.5.4=...(cách)

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:  a. Họ ngồi chỗ nào cũng được?  b. Nam ngồi kề nhau, nữ ngồi kề nhau?  c. Nam và nữ ngồi xen kẻ nhau?  d. Có 2 người luôn ngồi cạch nhau?Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách: a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa b. Vào 5 ghế chung quanh một...
Đọc tiếp

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:

  a. Họ ngồi chỗ nào cũng được?
  b. Nam ngồi kề nhau, nữ ngồi kề nhau?
  c. Nam và nữ ngồi xen kẻ nhau?
  d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
 a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
 b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này 
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông

0
6 tháng 8 2019

Đáp án A

Phương pháp:

- Coi hai ông Trum và Kim là một người thì bài toán trở thành xếp 9 người vào dãy ghế.

- Lại có 2 cách đổi chỗ hai ông Trum và Kim nên từ đó suy ra đáp số.

Cách giải:

Kí hiệu 10 vị nguyên thủ là a, b, c, d, e, f, g, h, i, k.

Và hai ông Trum, Kim lần lượt là a, b.

Nếu ông Trum ngồi lên bên trái ông Kim, tương đương xếp  a b , c, d, e, f , g, h ,i ,k vào 9 vị trí. Ta có  A 9 9 cách.

Vậy tổng hợp lại, có  A 9 9 + A 9 9 = 2 . 9 ! cách.

15 tháng 7 2019

a) Xếp 6 nam vào 6 ghế cạnh nhau. Có 6! cách.

Giữa các bạn nam có 5 khoảng trống cùng hai đầu dãy, nên có 7 chỗ có thể đặt ghế cho nữ.

Bây giờ chọn 4 trong 7 vị trí để đặt ghế. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Xếp nữ vào 4 ghế đó. Có 4! cách.

Vậy có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách xếp mà không có hai bạn nữ nào ngồi cạnh nhau.

b) Xếp 6 ghế quanh bàn tròn rồi xếp nam vào ngồi. Có 5! cách.

Giữa hai nam có khoảng trống. Xếp 4 nữ vào 4 trong 6 khoảng trống đó. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Theo quy tắc nhân, có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

18 tháng 5 2017

Tổ hợp - xác suất

22 tháng 9 2021

cop bên vietjack à

 

18 tháng 5 2017

Tổ hợp - xác suất

10 tháng 12 2018

a) Có 2. 9 = 18 cách xếp chỗ cho An và Bình ngồi cạnh nhau.

8 bạn kia được xếp vào 8 chỗ còn lại. Vậy có 8! cách xếp 8 bạn còn lại và do đó có 18! 8 cách xếp sao cho An, Bình ngồi cạnh nhau.

b) Có 10! cách xếp chỗ ngồi cho 10 bạn.

Từ đó có 10! - 18. 8! = 72. 8! cách xếp chỗ cho 10 bạn mà An và Bình không ngồi cạnh nhau.

5 tháng 10 2021

a) Có 2 cách xếp.

    Bạn A có 6! cách.

    Bạn B có 6! cách.

    Đổi vị trí A,B có tất cả 2*(6!)2 cách xếp chỗ.

b) Chọn 1 học sinh A vào vị trí bất kì: 12 cách.

    Chọn 1 học sinh B đối diện A có 6 cách.

    Cứ chọn liên tục như vậy ta được:

     \(\left(12\cdot6\right)\cdot\left(10\cdot5\right)\cdot\left(8\cdot4\right)\cdot\left(6\cdot3\right)\cdot\left(4\cdot2\right)\cdot\left(2\cdot1\right)=2^6\cdot\left(6!\right)^2\)

   cách xếp chỗ để hai bạn ngồi đối diện thì kkhasc trường         nhau.

9 tháng 10 2022

Ở ý a) tại sao bạn A lại có $6!$ cách v ạ?

bạn B cx thế ạ?

22 tháng 12 2018

số cách xếp 6  người vào 6 ghế là 6!.

Số cách xếp thỏa yêu cầu bài toán: 6!-240=480 cách.

Chọn A.