Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số dãy là x, số người ngồi trong mỗi dãy là y dk:...
Theo bài ra ra có xy =70 (1)
Nếu ta bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 4 người ngồi mới đủ chỗ
=> (x-2)(y+4) = 70 (2)
Từ (1) và (2) ta có hệ phương trình...................
Giải ra được x = 7 ; y = 10
MÌNH GIẢI SAI MONG CÁC BẠN THÔNG CẢM VÀ SỬA JUP MIK!!
Gọi số dãy ghế lúc đầu là x (dãy ghế) Đk: x>2
Số ghế mỗi dãy lúc đầu là 210/x(ghế)
dãy ghế lúc sau là x+2(dãy ghế)
Số ghế mỗi dãy lúc sau là 272/x+2(ghế)
Vì thực tế phải xếp thêm mỗi dãy 2 ghế nên ta có pt:
(210/x)-(272/x+2)+2=0(1)
Giải pt (1) ta có: x1=15(TM),x2=14(TM)
Với số dãy ghế lúc đầu là 15 (dãy) suy ra mỗi dãy có số ghế là 14 (ghế)
Với số dãy ghế lúc đầu là 14 (dãy) suy ra mỗi dãy có số ghế là 15 (ghế)
Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
{y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.
Gọi số dãy ghế ban đầu là x,
số ghế trong mỗi dãy ban đầu là y (x, y ∈ N*)
Ta có: x.y=320 ⇒ y=\(\dfrac{320}{x}\)
Nhưng vì số người hôm đó tới dự là 420 người do đó phải đặt thêm 1 dãy ghế và thu xếp để mỗi dãy ghế được thêm 4 người ngồi mới đủ nên ta có:
( x+1).( y+4)=420
⇔ ( x+1).( \(\dfrac{320}{x}\)x +4)= 420
⇔ 320+4x+\(\dfrac{320}{x}\) +4=420
⇒ 320x+4x²+320+4x=420x
⇔ 4x²-96x+320=0
⇔ x=20 hoặc x=4
Nếu x=20 thì y=16
Nếu x=4 thì y=80
Vậy trong phòng lúc đầu có 20 dãy ghế, mỗi dãy có 16 ghế
hoặc 4 dãy ghế, mỗi dãy có 80 ghế.
Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)
Lúc đầu mỗi dãy có \(\frac{240}{x}\)ghế
Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế
=> \(\left(\frac{240}{x}+1\right)\left(x+3\right)=315\Leftrightarrow240+\frac{720}{x}+x+3=315\)
\(\Leftrightarrow x-72+\frac{720}{x}=0\Leftrightarrow\frac{x^2-72x+720}{x}=0\Leftrightarrow x^2-72x+720=0\)
\(\Delta'=\left(-36\right)^2-720=576\)
=> x1= 60 (Loại), x2=12 (thỏa mãn)
Vậy trong phòng họp lúc đầu có 12 dãy ghế.
gọi số hàng ghế ban đầu là x ( hàng )( đk x>0)
\(\Rightarrow\)số hàng ghế sau khi thêm một hàng là x+1 ( hàng)
số ghế trên một hàng ban đầu là \(\frac{300}{x}\)(ghế)
số ghế trên một hàng sau khi thêm hai ghế và một hàng là \(\frac{357}{x+1}\)(ghế)
ta có phương trình : \(\frac{357}{x+1}\)=\(\frac{300}{x}\)+2
\(\Rightarrow\)357x =300x+300 +2x\(^2\)+2
\(\Leftrightarrow\)-2x\(^2\)+57x-302=0
\(\Leftrightarrow\)2x\(^2\)-57x+302=0
giải phương trình bậc hai
đối chiếu điều kiện
kết luận
Gọi số chỗ ngồi ban đầu ở mỗi dãy là x
Theo đề, ta có: 80/x+2=80/x-2
=>80/(x+2)-80/x=-2
=>\(\dfrac{80x-80x-160}{x\left(x+2\right)}=-2\)
=>x^2+2x-80=0
=>x=8
đặc biệt bây giờ bạn cần phải thật bình tĩnh để làm bài nhé
chúc bạn thành công
Gọi số dãy là x, số ghế mỗi dãy là y (x,y>0)
Theo đề bài ta có \(x.y=300\left(1\right)\)
Vì nếu số dãy tăng thêm 5 và số chỗ ngồi mỗi dãy tăng thêm 5 thì số ghế trong phòng là 500 \(\Rightarrow\left(x+5\right)\left(y+5\right)=500\Rightarrow xy+5\left(x+y\right)+25=500\)
\(x+y=35\)
Thay \(x=35-y\)vào \(\left(1\right)\)ta có \(\left(35-y\right)y=300\Rightarrow-y^2+35y-300=0\Rightarrow\orbr{\begin{cases}y=15\\y=20\end{cases}\Rightarrow\orbr{\begin{cases}x=20\\x=15\end{cases}}}\)
Vậy số dãy là 15 hoặc 20
đây nha!