K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
                                     {y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.

9 tháng 5 2018

Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)

Lúc đầu mỗi dãy có \(\frac{240}{x}\)ghế

Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế

=> \(\left(\frac{240}{x}+1\right)\left(x+3\right)=315\Leftrightarrow240+\frac{720}{x}+x+3=315\)

\(\Leftrightarrow x-72+\frac{720}{x}=0\Leftrightarrow\frac{x^2-72x+720}{x}=0\Leftrightarrow x^2-72x+720=0\)

\(\Delta'=\left(-36\right)^2-720=576\)

=> x1= 60 (Loại), x2=12 (thỏa mãn)

Vậy trong phòng họp lúc đầu có 12 dãy ghế. 

Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)

Lúc đầu mỗi dãy có 240xghế

Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế

=> (240x+1)(x+3)=315⇔240+720x+x+3=315

⇔x−72+720x=0⇔x2−72x+720x=0⇔x2−72x+720=0

Δ′=(−36)2−720=576

=> x1= 60 (Loại), x2=12 (thỏa mãn)

Vậy trong phòng họp lúc đầu có 12 dãy ghế. 

16 tháng 1 2019

bài mẫu nè:

gọi số dãy ghế là x, số ghê là y 
theo đb ta có hpt 
(x-2)(y+2)=288 
xy=288 
giải pt tìm đk x=18; y=16 

27 tháng 5 2021

sai r bạn ak phải ra là 2 TH là 12(tm) và -16( k tm)

 

14 tháng 6 2017

Coi ban đầu có n dãy ghế ( \(n\in N\)*; n < 250 , \(n\inƯ\left(250\right)\))

Ban đầu mỗi dãy có số chỗ ngồi là : \(\frac{250}{n}\) ( chỗ )

Do có 308 người dự họp, btc kê thêm 3 dãy ghế, mỗi dãy thêm một chỗ ngồi nên ta có phương trình :

\(\left(\frac{250}{n}+1\right)\left(n+3\right)=308\)

Bạn giải PT là ra n = 25 (TMĐK) và mỗi dãy ghế có 250 / 25 = 10 ( chỗ ngồi ).

7 tháng 4 2019

Đáp án : 

10 chỗ ngồi 

Hok tốt

6 tháng 6 2017

1 dãy là bao nhiêu ghế

26 tháng 4 2019

đoán xem xme \

DD
23 tháng 7 2021

Gọi số dãy ghế lúc đầu của phòng họp là \(x\)(dãy) \(x\inℕ^∗,x>20\).

Số ghế trên mỗi dãy lúc đầu là: \(\frac{120}{x}\)(ghế) 

Thực tế có số dãy ghế là: \(x+2\)(dãy) 

Mỗi dãy có số ghế là: \(\frac{120}{x}+1\)(ghế)

Ta có phương trình: 

\(\left(x+2\right)\left(\frac{120}{x}+1\right)=160\)

\(\Leftrightarrow120+\frac{240}{x}+x+2=160\)

\(\Leftrightarrow\orbr{\begin{cases}x=8\left(l\right)\\x=30\left(tm\right)\end{cases}}\)