Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi vận tốc dự định đi hết quãng đg AB là x (km/h) , x >0.
suy ra tg dự định đi hết quãng đg AB là 100/x ( h)
1/3 quãng đg đầu xe đi hết : 100x/3 (h)
2/3 quãng đg sau xe đi với vận tốc (x + 10) km/h hết 200(x+10)/3 (h)
theo bài ra ta có pt :
\(\frac{100}{x}-\frac{1}{6}=\frac{100}{3x}+0,5+\frac{200}{3\left(x+10\right)}\)
gpt ta tìm x
Gọi vận tốc lúc đi là xx(km/h), khi đó vận tốc lúc về là x+2x+2(km/h)
Thời gian đi là 3x3x(h) và thời gian về là 3x+23x+2(h)
Do bạn đã nghỉ 33 phút =120(h)=120(h) nên thời gian đi nhiều hơn thời gian về 3 phút nên ta có
3x=3x+2+1203x=3x+2+120
⇔60(x+2)=60x+x(x+2)⇔60(x+2)=60x+x(x+2)
⇔x2+2x−120=0⇔x2+2x−120=0
⇔(x−10)(x+12)=0⇔(x−10)(x+12)=0
Vậy x=10x=10 hoặc x=−12x=−12 (loại)
thời gian đi xe là :3/10+3/12=0,55(giờ)=33 phút
Gọi vận tốc dự kiến của xe là : x km/h
gọi điểm xe bị hỏng là C:
Quãng đường từ A đến C là : 2x km
Quãng đường CB là : 90 -2x
Thời gian xe đi với vận tốc dự kiến từ A đến C là : \(\frac{90}{x}h\left(x\ne0\right)\)
Thời gian xe đi với vận tốc đã tăng tốc đi từ C đến B là : \(\frac{90-2x}{x+10}\)
Thự tế xe đến kịp so với thời gian dự kiến nên :
\(\frac{90}{x}=\frac{90-2x}{x+10}+2+\frac{1}{4}\Leftrightarrow90.4\left(x+1\right)=4x\left(90-2x\right)+9x\left(x+1\right)\)
\(\Leftrightarrow x^2+9x-90=0\Leftrightarrow\orbr{\begin{cases}x=6\\x=-15\left(L\right)\end{cases}}\)
Vậy vận tốc ban đầu của xe là : 6 km/h
Gọi vận tốc dự định của xe là x (km/h; x > 0)
Thời gian ô tô dự định đi là \(\dfrac{120}{x}\) (giờ)
Sau 2h đi, ô tô đi được: 2x (km)
Vận tốc lúc sau của ô tô là x + 10 (km/h)
Thời gian của ô tô đi trên quãng đường còn lại là \(\dfrac{120-2x}{x+10}\) (giờ)
Do người đó đến B đúng thời gian dự tính => ta có phương trình:
\(2+\dfrac{1}{2}+\dfrac{120-2x}{x+10}=\dfrac{120}{x}\)
<=> (x-30)(x+80) = 0
Mà x > 0
<=> x = 30 (tm)
Vận tốc của xe là 30km/h
Thời gian xe đi là \(\dfrac{120}{30}=4\left(giờ\right)\)
Lời giải:
Gọi vận tốc dự định ban đầu là $a$ km/h
Thời gian dự định: $\frac{120}{a}$ (h)
Người đó đi 1/3 quãng đường đầu với thời gian $\frac{120}{a}:3=\frac{40}{a}$ (h)
Nghỉ thêm 40' nghĩa là nghỉ $\frac{2}{3}$ h
$120(1-\frac{1}{3})=80$ km còn lại đi với thời gian: $\frac{80}{a+10}$ (h)
Ta có:
$\frac{40}{a}+\frac{2}{3}+\frac{80}{a+10}=\frac{120}{a}$
$\Leftrightarrow \frac{2}{3}+\frac{80}{a+10}=\frac{80}{a}$
Giải pt trên với đk $a>0$ ta có: $a=30$ (km/h)
Gọi vận tốc dự địnhlà x
Thời gian dự kiến là 120/x
Theo đề, ta có: \(\dfrac{40}{x}+\dfrac{2}{3}+\dfrac{80}{x+10}=\dfrac{120}{x}\)
=>\(\dfrac{80}{x+10}-\dfrac{80}{x}=\dfrac{-2}{3}\)
=>\(\dfrac{40}{x}-\dfrac{40}{x+10}=\dfrac{1}{3}\)
=>\(\dfrac{40x+400-40x}{x^2+10x}=\dfrac{1}{3}\)
=>x^2+10x=1200
=>x^2+10x-1200=0
=>(x+40)(x-30)=0
=>x=30
GỌI VẬN TỐC BAN ĐẦU LÀ V ,THỜI GIAN DỰ ĐỊNH LÀ T, THỜI GIAN ĐI QUANG ĐƯỜNG CON LẠI LÀ T' (ĐK V,T,T'>0)
S=V*T=V*2+(V+2)*T'
\(\Rightarrow V\cdot T=2V+\left(V+2\right)\cdot T'\)
TA LẠI CÓ :T'=T-2-0,5
\(\Rightarrow V\cdot T=2V+\left(V+2\right)\cdot\left(T-2-0,5\right)\)
\(\Rightarrow2T-5=0,5\cdot V\Rightarrow T=\frac{\left(0,5\cdot V+5\right)}{2}\)
MÀ V*T=50\(\Rightarrow V\cdot\frac{\left(0,5V+5\right)}{2}=50\Rightarrow V=10;-20\)
VÌ V>0 V=10...