K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

Câu 2 nghi vấn đề thiếu hoặc sai. Câu 1 làm được nhưng lười làm.

30 tháng 8 2017

Câu 1/

Ta có:

\(2.4.6...1990.1992=2.4.6...1990.\left(1993-1\right)\)

\(=2.4.6...1990.1993-1.2.4.6...1990\)

\(=2.4.6...1990.1993-1.2.4.6...1988.\left(1993-3\right)\)

\(=2.4.6...1990.1993-1.2.4.6...1988.1993+1.3.2.4.6...1988\)

\(..............................................................\)

\(=1993B+1.3.5...1989.1991\)

Quay lại bài toán ta có:

\(A=2.4.6...1990.1992-1.3.5...1989.1991\)

\(=1993B+1.3.5...1989.1991-1.3.5...1989.1991\)

\(=1993B⋮1993\)

Vậy \(A⋮1993\)

17 tháng 2 2017

bn ơi pải là | y | chứ

kết quả là 4

17 tháng 2 2017

Cám ơn bạn yeu

14 tháng 10 2021

Hi :v, chăm quá v

15 tháng 10 2021

Từ phương trình đã cho suy ra \(\sqrt[7]{z+75938}+\sqrt[7]{z+14197}+\sqrt[7]{z}=12\).

Nếu \(z>2187\Rightarrow VT>12\).

Tương tự với z < 2187.

Suy ra \(z< 2187\) nên y = ...; x = ...

29 tháng 11 2017

Bạn Hùng nhầm công thức

Bạn Hoa giải đúng

4 tháng 12 2017

bạn Hoa giải đúng . Bạn Hùng nhầm công thức

20 tháng 12 2016

\(\frac{x}{3}=\frac{y}{7}\Leftrightarrow\frac{x}{6}=\frac{x}{14}\left(1\right);\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{35}\left(2\right)\)

Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{14}=\frac{z}{35}\)=>\(\frac{x^2}{36}=\frac{y^2}{196}=\frac{z^2}{1225}=\frac{2x^2}{72}=\frac{3y^2}{588}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{36}=\frac{y^2}{196}=\frac{z^2}{1225}=\frac{2x^2}{72}=\frac{3y^2}{588}=\frac{2x^2+3y^2-z^2}{72+588-1225}=\frac{-2260}{-565}=4\)

hay \(\frac{x^2}{36}=4\Leftrightarrow x^2=144\Leftrightarrow x=\pm12\)

      \(\frac{y^2}{196}=4\Leftrightarrow y^2=784\Leftrightarrow y=\pm28\)

      \(\frac{z^2}{1225}=4\Leftrightarrow z^2=\Leftrightarrow z=\pm70\)

+)Với x=-12 thì y=-28 và z=-70

+)Với x=12 thì y=28 và z=70

Vậy ...................

20 tháng 12 2016

lúc nãy viết thiếu, chỗ z2=4900 nhé :)

14 tháng 7 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)

=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn

Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)

=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)

Vậy ..

14 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)

Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)

20 tháng 10 2017

vì x+y+z = 1

\(x^3+y^3+z^3=1\)

\(\Rightarrow\)P=1

7 tháng 6 2018

Vì x+y+z=1 và \(x^3+y^3+z^3=1\)

nên x+y+z=\(x^3+y^3+z^3=1\)

\(P=x^{2017}+y^{2017}+z^{2017}=x^{3+3+3+.......+1}+y^{3+3+3+.....+1}+z^{3+3+3+....+1}\) =\(x^3\cdot x^3\cdot x^3\cdot......\cdot x+y^3\cdot y^3\cdot y^3\cdot....\cdot y+z^3\cdot z^3\cdot z^3\cdot...\cdot z\)

=\(\left(x^3+y^3+z^3\right)\cdot\left(x^3+y^3+z^3\right)\cdot........\cdot\left(x+y+z\right)\)

= 1*1*1*......*1=1

Mình ko chắc lắm