Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có ai biết làm thế nào để giải bài toán dạng "đối xứng vòng quanh " không giúp mình với mọi người ơi
câu vừa nãy mình làm sai nha
nếu x = 1 thì phép tính đó âm mất rùi
nên là bài này không có kết quả
Vì x^4= x.x.x.x
4x+3=x.4+3
=>x^4>4x+3
=>x^4-4x+3>0
=>x^4-4x+3 không âm với mọi x
a): ta có AB^2 + AC^2 = 30^2 = 900 <=> AB = √(900 - AC^2)
AB:AC = 3:4 <=> AB = 3 * AC / 4
=> √(900 - AC^2) = 3 * AC / 4
<=> 900 - AC^2 = 9 * AC^2 / 16
<=> 14400 - 16 * AC^2 = 9 * AC^2
<=> 14400 = 25 * AC^2
<=> 576 = AC^2
<=> AC = 24
=> AB = 24 / 4 * 3 = 18
\(\left(a-\dfrac{a^2+b^2}{a+b}\right)\left(\dfrac{1}{b}+\dfrac{2}{a-b}\right)\)
\(=\dfrac{a^2+ab-a^2-b^2}{a+b}\cdot\dfrac{a-b+2b}{b\left(a-b\right)}\)
\(=\dfrac{b\left(a-b\right)}{a+b}\cdot\dfrac{a+b}{b\left(a-b\right)}\)
=1
\(\left(a-\dfrac{x^2+a^2}{x+a}\right)\left(\dfrac{2a}{x}-\dfrac{4a}{x-a}\right)\)
\(=\dfrac{ax+a^2-x^2-a^2}{x+a}\cdot\dfrac{2ax-2a^2-4ax}{x\left(x-a\right)}\)
\(=\dfrac{a\left(x-a\right)}{x+a}\cdot\dfrac{-2a^2-2ax}{x\left(x-a\right)}\)
\(=\dfrac{a}{x+a}\cdot\dfrac{-2a\left(a+x\right)}{x}\)
\(=\dfrac{-2a^2}{x}\)
\(\left(a-\dfrac{x^2+a^2}{x+a}\right)\left(\dfrac{2a}{x}-\dfrac{4a}{x-a}\right)\)
\(=\dfrac{ax+a^2-x^2-a^2}{x+a}.\dfrac{2a\left(x-a\right)-4ax}{x\left(x-a\right)}\)
\(=\dfrac{x\left(a-x\right)}{x+a}.\dfrac{-2a^2-2ax}{x\left(x-a\right)}\)
\(=\dfrac{x\left(a-x\right)}{x+a}.\dfrac{-2a\left(a+x\right)}{x\left(x-a\right)}\)
\(=2a\)
a) Xét tứ giác AEBC có:
M là trung điểm AB(gt)
M là trung điểm EC(E đối xứng C qua M)
=> AEBC là hình bình hành
b) Xét tứ giác AFCB có:
N là trung điểm AC(gt)
N là trung điểm BF(B đối xứng F qua N)
=> AFCB là hình bình hành
=> AF//BC
Mà AE//BC(AEBC là hình bình hành)
=> E,A,F thẳng hàng(tiên đề Ơ-Clit)
c) Ta có: AE=BC(AEBC là hình bình hành)
AF=BC(AFCB là hình bình hành)
=> EF=AE+AF=2BC\(\Rightarrow BC=\dfrac{1}{2}EF\)
Xét tam giác ABC có:
M là trung điểm AB(gt)
N là trung điểm AC(gt)
=> MN là đường trung bình
\(\Rightarrow MN=\dfrac{1}{2}BC\Rightarrow MN=\dfrac{1}{2}.\dfrac{1}{2}EF=\dfrac{1}{4}EF\Rightarrow\dfrac{MN}{EF}=\dfrac{1}{4}\)
d) Để BCFE là hthang cân thì:
\(\widehat{BEA}=\widehat{AFC}\Rightarrow\widehat{ABC}=\widehat{ACB}\)
=> Tam giác ABC cân tại A