Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔHBD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔABD=ΔHBD
b: Ta có: ΔABD=ΔHBD
nên \(\widehat{BAD}=\widehat{BHD}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BHD}=90^0\)
hay DH\(\perp\)BC
Bài 2:
a: Ta có: Om là tia phân giác của \(\widehat{xOy}\)
nên \(\widehat{xOm}=\widehat{yOm}=\dfrac{180^0}{2}=90^0\)
Do đó: Om\(\perp\)xy
b: Ta có: \(\widehat{xOa}+\widehat{mOa}=90^0\)
\(\widehat{mOb}+\widehat{yOb}=90^0\)
mà \(\widehat{mOa}=\widehat{yOb}\)
nên \(\widehat{xOa}=\widehat{mOb}\)
Mình không nhìn thấy câu hỏi, giờ mới thấy bạn ạ
Do mở rộng cạnh của thửa đất về cả bốn phía nên thửa đất mới sau khi mở rộng cũng là hình vuông. mỗi cạnh của thửa đất lúc sau đã tăng :
0,5 x 2 = 1 (m)
Gọi cạnh hình vuông lúc đầu là x đk x > 0
Thì cạnh hình vuông lúc sau là : x + 1
theo bài ra ta có : (x + 1)( x + 1) - x2 = 20
x2 + x + x + 1 - x2 = 20
2x = 20 -1
2x = 19
x = 19: 2
x = 9,5
Kết luận cạnh hình vuông lúc đầu là 9,5 m
Ta có: \(14x=21y=16z\)=> \(\frac{x}{\frac{1}{14}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}\) => \(\frac{2x}{\frac{1}{7}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{\frac{1}{7}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}=\frac{2x+y-z}{\frac{1}{7}+\frac{1}{21}-\frac{1}{16}}=\frac{2}{\frac{43}{336}}=\frac{672}{43}\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{14}}=\frac{672}{43}\\\frac{y}{\frac{1}{21}}=\frac{672}{43}\\\frac{z}{\frac{1}{16}}=\frac{672}{43}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{672}{43}.\frac{1}{14}=\frac{48}{43}\\y=\frac{672}{43}.\frac{1}{21}=\frac{32}{43}\\z=\frac{672}{43}.\frac{1}{16}=\frac{42}{43}\end{cases}}\)
Vậy ...
\(\Rightarrow\frac{x}{\frac{1}{14}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}\)
\(\Rightarrow\frac{2x}{\frac{1}{7}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}\)
+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{\frac{1}{7}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}=\frac{2x+y-z}{\frac{1}{7}+\frac{1}{21}-\frac{1}{16}}=\frac{2}{\frac{43}{336}}=\frac{672}{43}\)
Suy ra \(\frac{2x}{\frac{1}{7}}=\frac{672}{43}\Rightarrow x=\frac{48}{43}\)
\(\frac{y}{\frac{1}{21}}=\frac{672}{43}\Rightarrow y=\frac{32}{43}\)
\(\frac{z}{\frac{1}{16}}=\frac{672}{43}\Rightarrow z=\frac{42}{43}\)
Vậy \(x=\frac{48}{43};y=\frac{32}{43};z=\frac{42}{43}\)
Chúc bạn học tốt !!!
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x+2020|+|x+2021|=|x+2020|+|-(x+2021)|$
$\geq |x+2020-(x+2021)|=1$
Vậy GTNN của biểu thức là $1$. Giá trị này đạt tại $(x+2020).-(x+2021)\geq 0$
$(x+2020)(x+2021)\leq 0$
$-2021\leq x\leq -2020$
a: Xét ΔIMC vuông tại I và ΔINC vuông tại I có
IM=IN
CI chung
Do đó: ΔIMC=ΔINC
b: Xét ΔCKB có
M là trung điểm của BC
MN//KB
Do đó: N là trung điểm của CK
Gia sử AC > AB
Trên tia AC lấy M sao cho AB=AM
AD là tia phân giác góc A=>góc CAD=góc BAD
Tam giác AME và tam giác ABE có:
Góc CAD=góc BAD
MA=AB
AE:cạnh chung
=>tam giác AME = Tam giác ABE
=>ME=BE(Cạnh tương ứng)
Ta có:M thuộc AC =>AM+MC=AC
=>AC-AB=(AM+MC)-AB
Mà AM=MB=>(AM+MC)-AB=MC
Tam giác CEM có:MC>CE-ME(Bất đẳng thức tam giác)
Mà ME=BE=>MC>CE-BE
hay AC-AB>EC-EB