Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là tia phân giác của góc BAC
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
hay ΔAMN cân tại A
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
d: \(AH^2-AN^2=HN^2\)
\(BH^2-BM^2=MH^2\)
mà HN=MH
nên \(AH^2-AN^2=BH^2-BM^2\)
hay \(AH^2+BM^2=BH^2+AN^2\)
Bài 2: Chọn C
Bài 4:
a: \(\widehat{C}=180^0-80^0-50^0=50^0\)
Xét ΔABC có \(\widehat{A}=\widehat{C}< \widehat{B}\)
nên BC=AB<AC
b: Xét ΔABC có AB<BC<AC
nên \(\widehat{C}< \widehat{A}< \widehat{B}\)
\(f\left(0\right)=2010\Rightarrow a.0^2+b.0+c=2010\Rightarrow c=2010\)
\(f\left(1\right)=2011\Rightarrow a.1^2+b.1+c=2011\Rightarrow a+b+c=2011\)
\(\Rightarrow a+b+2010=2011\Rightarrow a+b=1\) (1)
\(f\left(-1\right)=2012\Rightarrow a.\left(-1\right)^2+b.\left(-1\right)+c=2012\)
\(\Rightarrow a-b+c=2012\Rightarrow a-b+2010=2012\)
\(\Rightarrow a-b=2\Rightarrow a=b+2\)
Thế vào (1) \(\Rightarrow b+2+b=1\Rightarrow2b=-1\Rightarrow b=-\dfrac{1}{2}\)
\(\Rightarrow a=b+2=-\dfrac{1}{2}+2=\dfrac{3}{2}\)
\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{1}{2}x+2010\)
\(\Rightarrow f\left(-2\right)=\dfrac{3}{2}.\left(-2\right)^2-\dfrac{1}{2}.\left(-2\right)+2010=2017\)
b) Xét tam giác ABF có:
BH là đường cao(AH⊥BH)
BH là phân giác( BC là phân giác \(\widehat{ABF}\))
=> Tam giác ABF cân tại B
=> AB=BF
Mà AB=CE(ΔMBA=ΔMCE)
=> CE=BF
c) Ta có: \(\widehat{ABC}=\widehat{BCE}\left(\Delta MBA=\Delta MCE\right)\)
Mà \(\widehat{ABC}=\widehat{KBC}\)(BC là phân giác \(\widehat{ABF}\))
\(\Rightarrow\widehat{BCE}=\widehat{KBC}\)
=> Tam giác KBC cân tại K
=> KM là đường trung tuyến cũng là đường phân giác \(\widehat{BKC}\left(1\right)\)
Ta có: KB=KC(KBC cân tại K), BF=CD(cmt)
=> KB-BF=KC-CE=> KF=KE
Xét tam giác BEK và tam giác CFK có:
KF=KE(cmt)
\(\widehat{K}\) chung
BK=KB(KBC cân tại K)
=> ΔBEK=ΔCFK(c.g.c)
=> \(\widehat{EBK}=\widehat{KCF}\)
Xét tam giác BFC và tam giác CEB có:
BC chung
\(\widehat{FBC}=\widehat{BCE}\)(cmt)
BF=CE(cmt)
=> ΔBFC=ΔCEB(c.g.c)
=> \(\widehat{BFC}=\widehat{BEC}\)
Xét tam giác BFI và tam giác CEI có:
\(\widehat{BFC}=\widehat{BEC}\left(cmt\right)\)
BF=CE(cmt)
\(\widehat{FBI}=\widehat{ECI}\left(cmt\right)\)
=> ΔBFI=ΔCEI(g.c.g)
=> IF=IC
=> ΔIFK=ΔIEK(c.c.c)
=> KI là phân giác \(\widehat{BKC}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow M,I,K\) thẳng hàng
Bài 5:
f(x) có 1 nghiệm x - 2
=> f (2) = 0
\(\Rightarrow a.2^2-a.2+2=0\)
\(\Rightarrow4a-2a+2=0\)
=> 2a + 2 = 0
=> 2a = -2
=> a = -1
Vậy:....
P/s: Mỗi lần chỉ đc đăng 1 câu hỏi thôi! Bạn vui lòng đăng bài hình trên câu hỏi khác nhé!
a)Ta có △MIP cân tại M nên ˆMNI=ˆMPIMNI^=MPI^
Xét △MIN và △MIP có:
ˆNMI=ˆPMINMI^=PMI^
MI : cạnh chung
ˆMNI=ˆMPIMNI^=MPI^
Nên △MIN = △MIP (c.g.c)
b)Gọi O là giao điểm của EF và MI
Vì △MNP là tam giác cân và MI là đường phân giác của △MIP
Suy ra MI đồng thời là đường cao của △MNP
Nên ˆMOE=ˆMOF=90oMOE^=MOF^=90o
Xét △MOE vuông tại O và △MOF vuông tại O có:
OM : cạnh chung
ˆEMO=ˆFMOEMO^=FMO^(vì MI là đường phân giác của △MIP và O∈∈MI)
Suy ra △MOE = △MOF (cạnh góc vuông – góc nhọn kề)
Nên ME = MF
Vậy △MEF cân
tham khảo
Bài 1:
a) ta thấy: AB2+AC2=62+82=100
BC2=102=100
⇒ΔABC là tam giác vuông tại A(định lý Pi-ta-go đảo)
b) Xét ΔBAD và ΔBED có:
\(\widehat{BAD}=\widehat{BED}=90^o\)
Chung BD
\(\widehat{DBA}=\widehat{DBE}\)(giả thiết)
⇒ΔBAD = ΔBED(cạnh huyền-góc nhọn)
⇒DA=DE(2 cạnh tương ứng)
Bài 2:
a, Xét hai tam giác AIC và BIC ta có:
IC chung
CA = CB
Góc CIA = CIB = 90o
=> Tam giác AIC = tam giác BIC (ch - cgv)
=> IA = IB (hai cạnh tương ứng bằng nhau)
b, IA = IB = 12/2 = 6
Áp dụng định lý Pytago vào Δ vuông ACI có:
AC²=AI²+IC²
⇒ IC²=AC²-AI²=10²-6²=64
⇒ IC=8 cm
c, Do CA=CB=10cm nên Δ ABC cân đỉnh C nên góc CAB= góc CBA
hay góc HAI=góc KBI
Xét Δ vuông IHA và Δ IKB có:
IA=IB (chứng minh trên)
góc HAI=góc KBI
Góc AHI=BKI=90o90o
⇒ Δ IHA = Δ IKB (ch-gn)
⇒ IH=IK (hai cạnh tương ứng bằng nhau)