Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)
b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
=> \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}=\frac{x+2y-3z}{2+6-15}=\frac{-48}{-7}=\frac{48}{7}\)
=> x = 2 . 48 : 7 = \(\frac{96}{7}\)
y = 48 . 3 : 7 = \(\frac{144}{7}\)
z = 48 . 5 : 7 = \(\frac{240}{7}\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
\(=>\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}=\frac{x+2y-3z}{2+6-15}=\frac{-48}{-7}=\frac{48}{7}\)
\(=>\frac{x}{2}=\frac{48}{7}=>x=......\)
\(=>\frac{2y}{6}=\frac{48}{7}=>y=......\)
\(=>\frac{3z}{15}=\frac{48}{7}=>z=......\)
Lời giải:
Đặt $\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=k$
$\Rightarrow x=2k; y=5k; z=3k$
Thay vào điều kiện $2x-y-3z=10$ có:
$2.2k-5k-3.3k=10$
$\Leftrightarrow -10k=10$
$\Leftrightarrow k=-1$
$\Rightarrow x=-2; y=-5; z=-3$
Vậy.........