K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Bài 1.

a. $=a^2+2.a.12+12^2=a^2+24a+144$

b. $=(3a)^2+2.3a.\frac{1}{3}+(\frac{1}{3})^2=9a^2+2a+\frac{1}{9}$

c. $=(5a^2)^2+2.5a^2.6+6^2=25a^4+60a^2+36$

d. $=\frac{1}{4}+2.\frac{1}{2}.4b+(4b)^2$

$=\frac{1}{4}+4b+16b^2$

e.

$=(a^m)^2+2.a^m.b^n+(b^n)^2$

$=a^{2m}+2a^mb^n+b^{2n}$

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Bài 2.

$(x-0,3)^2=x^2-0,6x+0,09$

$(6x-3y)^2=36x^2-36xy+9y^2$

$(5-2xy)^2=25-20xy+4x^2y^2$
$(x^4-1)^2=x^8-2x^4+1$

$(x^5-y^3)^2=x^{10}-2x^5y^3+y^6$

6 tháng 11 2021

Vì tổng các góc của hình tứ giác là 360o

Nên 3x + 5x + 2x +60o = 360o

     \(\Rightarrow x=30^o\)

\(10x=300\)

nên x=30

=>\(\widehat{A}=150^0;\widehat{B}=90^0;\widehat{D}=60^0\)

Câu 106: 

a: Xét ΔABC có 

P là trung điểm của AB

N là trung điểm của AC

Do đó: PN là đường trung bình của ΔABC

Suy ra: PN//BC

hay PN//HM; QN//HM

Xét tứ giác QNMH có QN//HM

nên QNMH là hình thang

mà \(\widehat{QHM}=90^0\)

nên QNMH là hình thang vuông

b: Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến ứng với cạnh huyền AC

nên \(HN=\dfrac{AC}{2}\left(1\right)\)

Xét ΔABC có

M là trung điểm của BC

P là trung điểm của AB

Do đó: MP là đường trung bình của ΔABC

Suy ra: MP//AC và \(MP=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MP=HN

Xét tứ giác MNPH có PN//HM

nên MNPH là hình thang

mà MP=HN

nên MNPH là hình thang cân

8 tháng 9 2021

bạn đinhr thực sự hâm mộ bạn luôn á cam rơn nhìu nha mong bn sẽ luôn giúp đỡ mik :)

a:Xét ΔPBD vuông tại P và ΔMDB vuông tại M có

BD chung

góc PBD=góc MDB

Do đo: ΔPBD=ΔMDB

=>góc HBD=góc HDB

=>HB=HD

Xét tứ giác BHDK có

BH//DK

BK//DH

HB=HD

Do đó: BHDK là hình thoi

b: BHDK là hình thoi

nên HK là trung trực của BD(1)

ABCD là hình thoi

mà AC cắt BD tại O

nên O là trung điểm của BD(2), AC là trung trực của BD(3)

Từ (1), (2), (3) suy ra O,H,K,A,C thẳng hàng

10 tháng 3 2022

a, ĐKXĐ:\(x\ne0,x\ne2\)

\(\dfrac{2}{x-2}-\dfrac{1}{x}=\dfrac{3}{x\left(x-2\right)}\\ \Leftrightarrow\dfrac{2x}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}-\dfrac{3}{x\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{2x-x+2-3}{x\left(x-2\right)}=0\\ \Rightarrow x-1=0\\ \Leftrightarrow x=1\left(tm\right)\)

b, ĐKXĐ:\(x\ne\pm3\)

\(\dfrac{1}{x+3}-\dfrac{2x-1}{x-3}=\dfrac{x^2-15}{x^2-9}\\ \Leftrightarrow\dfrac{x-3}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(2x-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{x^2-15}{\left(x-3\right)\left(x+3\right)}=0\\ \Leftrightarrow\dfrac{x-3-\left(2x^2-x+6x-3\right)-\left(x^2-15\right)}{\left(x-3\right)\left(x+3\right)}=0\\ \Rightarrow x-3-2x^2+x-6x+3-x^2+15=0\\ \Leftrightarrow-3x^2-4x+15=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\left(tm\right)\\x=-3\left(ktm\right)\end{matrix}\right.\)