Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
a. $=a^2+2.a.12+12^2=a^2+24a+144$
b. $=(3a)^2+2.3a.\frac{1}{3}+(\frac{1}{3})^2=9a^2+2a+\frac{1}{9}$
c. $=(5a^2)^2+2.5a^2.6+6^2=25a^4+60a^2+36$
d. $=\frac{1}{4}+2.\frac{1}{2}.4b+(4b)^2$
$=\frac{1}{4}+4b+16b^2$
e.
$=(a^m)^2+2.a^m.b^n+(b^n)^2$
$=a^{2m}+2a^mb^n+b^{2n}$
Bài 2.
$(x-0,3)^2=x^2-0,6x+0,09$
$(6x-3y)^2=36x^2-36xy+9y^2$
$(5-2xy)^2=25-20xy+4x^2y^2$
$(x^4-1)^2=x^8-2x^4+1$
$(x^5-y^3)^2=x^{10}-2x^5y^3+y^6$
Vì tổng các góc của hình tứ giác là 360o
Nên 3x + 5x + 2x +60o = 360o
\(\Rightarrow x=30^o\)
\(10x=300\)
nên x=30
=>\(\widehat{A}=150^0;\widehat{B}=90^0;\widehat{D}=60^0\)
mn giúp mik vs ạ bài nào cx đc ạ cả 2 thì càng tốt mik cảm ơn vì bài hơi dài nên mon mn thông cảm :)
Câu 106:
a: Xét ΔABC có
P là trung điểm của AB
N là trung điểm của AC
Do đó: PN là đường trung bình của ΔABC
Suy ra: PN//BC
hay PN//HM; QN//HM
Xét tứ giác QNMH có QN//HM
nên QNMH là hình thang
mà \(\widehat{QHM}=90^0\)
nên QNMH là hình thang vuông
b: Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến ứng với cạnh huyền AC
nên \(HN=\dfrac{AC}{2}\left(1\right)\)
Xét ΔABC có
M là trung điểm của BC
P là trung điểm của AB
Do đó: MP là đường trung bình của ΔABC
Suy ra: MP//AC và \(MP=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MP=HN
Xét tứ giác MNPH có PN//HM
nên MNPH là hình thang
mà MP=HN
nên MNPH là hình thang cân
bạn đinhr thực sự hâm mộ bạn luôn á cam rơn nhìu nha mong bn sẽ luôn giúp đỡ mik :)
a:Xét ΔPBD vuông tại P và ΔMDB vuông tại M có
BD chung
góc PBD=góc MDB
Do đo: ΔPBD=ΔMDB
=>góc HBD=góc HDB
=>HB=HD
Xét tứ giác BHDK có
BH//DK
BK//DH
HB=HD
Do đó: BHDK là hình thoi
b: BHDK là hình thoi
nên HK là trung trực của BD(1)
ABCD là hình thoi
mà AC cắt BD tại O
nên O là trung điểm của BD(2), AC là trung trực của BD(3)
Từ (1), (2), (3) suy ra O,H,K,A,C thẳng hàng
a, ĐKXĐ:\(x\ne0,x\ne2\)
\(\dfrac{2}{x-2}-\dfrac{1}{x}=\dfrac{3}{x\left(x-2\right)}\\ \Leftrightarrow\dfrac{2x}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}-\dfrac{3}{x\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{2x-x+2-3}{x\left(x-2\right)}=0\\ \Rightarrow x-1=0\\ \Leftrightarrow x=1\left(tm\right)\)
b, ĐKXĐ:\(x\ne\pm3\)
\(\dfrac{1}{x+3}-\dfrac{2x-1}{x-3}=\dfrac{x^2-15}{x^2-9}\\ \Leftrightarrow\dfrac{x-3}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(2x-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{x^2-15}{\left(x-3\right)\left(x+3\right)}=0\\ \Leftrightarrow\dfrac{x-3-\left(2x^2-x+6x-3\right)-\left(x^2-15\right)}{\left(x-3\right)\left(x+3\right)}=0\\ \Rightarrow x-3-2x^2+x-6x+3-x^2+15=0\\ \Leftrightarrow-3x^2-4x+15=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\left(tm\right)\\x=-3\left(ktm\right)\end{matrix}\right.\)