K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 8 2021

\(log_{\sqrt{x}}y=\dfrac{2y}{5}\Rightarrow2log_xy=\dfrac{2y}{5}\) \(\Rightarrow log_xy=\dfrac{y}{5}\)

\(log_{\sqrt[3]{5}}x=\dfrac{15}{y}\Rightarrow3log_5x=\dfrac{15}{y}\Rightarrow log_5x=\dfrac{5}{y}\)

\(\Rightarrow log_xy=\dfrac{1}{log_5x}=log_x5\Rightarrow y=5\)

\(\Rightarrow log_5x=\dfrac{5}{5}=1\Rightarrow x=5\)

\(\Rightarrow x^2+y^2=25+25=50\)

Chọn B

16 tháng 2 2022

B nhé

NV
16 tháng 2 2022

\(g'\left(x\right)=3.f'\left(3x\right)+9=0\Rightarrow f'\left(3x\right)=-3\Rightarrow\left[{}\begin{matrix}3x=-1\\3x=0\\3x=1\\3x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=0\\x=\dfrac{1}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\) Trên \(\left[-\dfrac{1}{3};\dfrac{1}{3}\right]\) hàm \(g\left(x\right)\) đạt cực đại tại \(x=0\) và cực tiểu tại \(x=-\dfrac{1}{3};\dfrac{1}{3}\)

\(\Rightarrow g\left(x\right)_{max}=g\left(0\right)=f\left(0\right)\)

10 tháng 2 2022

Ta có: \(\int\dfrac{xdx}{x^2+3}\)

Đặt \(u=x^2+3\left(u>0\right)\) 

Có \(du=2xdx\)

\(\Rightarrow\int\dfrac{xdx}{x^2+3}=\)\(\int\dfrac{du}{2u}=\dfrac{1}{2}ln\left(u\right)=\dfrac{1}{2}ln\left(x^2+3\right)\)

10 tháng 2 2022

Cảm ơn bạn nhiều 🥰

DD
2 tháng 1 2023

\(f\left(x\right)=ax^3+bx^2+cx+d\)

Dựa vào đồ thị ta có: \(f\left(-2\right)=2,f\left(-1\right)=-1,f\left(0\right)=0,f\left(1\right)=-1\)

Từ đó suy ra \(f\left(x\right)=-x^3-x^2+x\).

\(g\left(x\right)=\left|f^3\left(x\right)-3f\left(x\right)\right|\)

\(h\left(x\right)=f^3\left(x\right)-3f\left(x\right)\)

\(h'\left(x\right)=3f'\left(x\right)f^2\left(x\right)-3f'\left(x\right)\)

\(h'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}f'\left(x\right)=0\\f^2\left(x\right)=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}f'\left(x\right)=0\\f\left(x\right)=1\\f\left(x\right)=-1\end{matrix}\right.\)

\(f'\left(x\right)=0\) có \(2\) nghiệm đơn

\(f\left(x\right)=1\) có \(1\) nghiệm đơn

\(f\left(x\right)=-1\) có \(1\) nghiệm đơn, \(1\) nghiệm kép. 

Kết hợp lại ta được phương trình \(h'\left(x\right)=0\) có \(4\) nghiệm bội lẻ (do nghiệm \(x=-1\) vừa là nghiệm kép của \(f\left(x\right)=-1\) vừa là nghiệm đơn của \(f'\left(x\right)=0\)).

mà \(limh\left(x\right)=-\infty\) do đó \(g\left(x\right)=\left|h\left(x\right)\right|\) có \(3\) điểm cực đại, \(4\) điểm cực tiểu suy ra \(T=n^m=4^3=64\).

Chọn A.

NV
30 tháng 1 2022

Thiếu hình vẽ đồ thị \(y=f'\left(x\right)\) rồi em

30 tháng 1 2022

Trong câu ko có đồ thị hàm số y= f'(x) ạ. Chỉ có câu hỏi thui à thầy 

NV
14 tháng 9 2021

3.

Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

B đúng

4.

Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(0;1\right)\)

A đúng

1.

B sai (thiếu điều kiện \(f'\left(x\right)=0\) tại hữu hạn điểm)

14 tháng 9 2021

thầy ơi còn câu 9 vs câu 2 s thầy

 

25 tháng 9 2021

undefinedundefined

Bạn tham khảo nhé :)) Cái đoạn tính Lim là mình sử dụng máy tính cầm tay cho nhanh nên có thể nó hơi tắt