Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(Vt\ge0\left(\forall a,b,c\right)\) nên dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Rightarrow a=b=c\)
Ta có : a2 + b2 + c2 = ab + bc + ca
=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
= (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0
=> (a - b)2 + (b - c)2 + (c - a)2 = 0
=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\left(\text{đpcm}\right)\)
b) Ta có : 2(x2 + t2) + (y + t)(y - t) = 2x(y + t)
=> 2x2 + 2t2 + y2 - t2 = 2xy + 2t
=> 2x2 + t2 + y2 = 2xt + 2xy
=> 2x2 + t2 + y2 - 2xt - 2xy = 0
=> (x2 - 2xy + y2) + (x2 + t2 - 2xt) = 0
=> (x - y)2 + (x - t)2 = 0
=> \(\hept{\begin{cases}x-y=0\\x-t=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x=t\end{cases}}\Rightarrow x=y=t\left(\text{đpcm}\right)\)
c) Ta có a + b + c = 0
=> (a + b + c)2 = 0
=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
=> a2 + b2 + c2 + 2(ab + bc + ca) = 0
=> a2 + b2 + c2 = 0
=> a = b = c = 0
Khi đó A = (0 - 1)2003 + 02004 + (0 + 1)2005
= - 1 + 0 + 1 = 0
Vậy A = 0
a: Ta có: \(x^2-8x+20\)
\(=x^2-8x+16+4\)
\(=\left(x-4\right)^2+4>0\forall x\)
b: Ta có: \(-x^2+6x-19\)
\(=-\left(x^2-6x+19\right)\)
\(=-\left(x^2-6x+9+10\right)\)
\(=-\left(x-3\right)^2-10< 0\forall x\)
bạn đặt \(\left(\frac{x}{a};\frac{y}{b};\frac{z}{c}\right)=\left(m;n;p\right)\)
thì ta có \(\hept{\begin{cases}m+n+p=1\\\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=0\end{cases}}\)
từ gt 2 , ta có \(\frac{mn+np+pn}{mpn}=0\Rightarrow mn+np+pm=0\)
từ giả thiết 1, ta có \(\left(m+n+p\right)^2=1\Rightarrow m^2+n^2+p^2+2\left(mn+np+pm\right)=1\)
=> \(m^2+n^2+p^2=1\) hay \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
vậy A=1
a) x(y-z) + y(z-x) + z(x-y)
= xy - xz + zy - xy + xz - yz
= ( xy - xy ) - ( xz - xz ) + ( zy - yz )
= 0 - 0 + 0
= 0 ( đpcm )
b) x(y+z-yz) - y(z+x-xz) + z(y-x)
= xy + xz - xyz - yz - xy + xyz + zy - zx
= ( xy - xy ) + ( xz - zx ) - ( xyz - xyz ) - ( yz - zy )
= 0 + 0 - 0 - 0
= 0 ( đpcm )
a) \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow a=b=c\)
Mà a + b + c = 3 \(\Rightarrow a=b=c=1\)
\(\Rightarrow M=1+2015+2020\)\(=4036\)
b) \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
\(\Rightarrow\left(x-y\right)\left(x^2+y^2\right)< \left(x+y\right)\left(x^2-y^2\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2\right)-\left(x+y\right)\left(x-y\right)\left(x+y\right)< 0\)
\(\Leftrightarrow\left(x-y\right)\left[x^2+y^2-\left(x+y\right)\left(x+y\right)\right]< 0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-x^2-2xy-y^2\right)< 0\)
\(\Leftrightarrow-2xy\left(x-y\right)< 0\)
Có \(x>y\Rightarrow x-y>0\)
\(\Rightarrow-2xy< 0\)
\(\Leftrightarrow xy>0\)
TH1: \(\orbr{\begin{cases}x>0\\y>0\end{cases}}\)( thỏa mãn )
TH2:\(\orbr{\begin{cases}x< 0\\y< 0\end{cases}}\)( loại )
Vậy bđt được chứng minh
Ta có a/(a+b+c)<a/(a+b)<a+c/a+b+c ( Cái này là vì a/a+b <1)
Tương tự vậy với mấy cái kia cx thế cộng theo vế là ra nha bạn
Có ai giải rõ hơn k z ???