Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2009.2010.2011}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2009.2010}-\frac{1}{2010.2011}\)
\(=\frac{1}{1.2}-\frac{1}{2010.2011}<\frac{1}{2}\)
Vậy \(S<\frac{1}{2}\)
Bài 2:
Làm nhiều rồi vào trong chỗ góc học tập của tớ mà coi
bạn ơi mình nghĩ bạn hãy đưa qua mục toán đi ạ sẽ có nhiều người giỏi trả lời hơn
a, với n thuộc Z
Để A là một số nguyên thì 3n + 1 chia hết cho n+1
mà n + 1 chia hết n +1
=> (3n+1) - 3. (n+1) chia hết cho n+1
<=> (3n+1)-( 3n +3) chia hết cho n+1
<=> 4 chia hết cho n+1
=> n+1 thuộc Ư(4)= {+-1; +-4; +-2}
nếu ............
M= 1 - 1/2 + 1/2 - 1/3 +1/3 -1 /4 + 1/4 - 1/5 + .....+ 1/10 - 1/11 + 1/11 -1/12
= 1 - 1/12
= 11/12