Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu trong \(5\) học sinh phải có ít nhất \(2\) học sinh nữ và \(2\) học sinh nam thì có \(2\) trường hợp :
\(2\) nam \(3\) nữ, có : \(C^2_{10}.C^3_{10}\) cách:
\(3\) nam và \(2\) nữ, có : \(C^3_{10}.C^2_{10}\) cách:
Vậy tất cả có : \(2.C^2_{10}.C^3_{10}=10800\) cách.
b) Nếu trong \(5\) học sinh phải có ít nhất \(1\) học sinh nữ và \(1\) học sinh nam thì có 4 trường hợp :
\(1\) nam và \(4\) nữ, có: \(C^1_{10}.C^4_{10}\) cách.
\(2\) nam và \(3\) , có : \(C^2_{10}.C^3_{10}\) cách.
Còn lại bn tự lm nha, mỏi tay quá
- Chọn lớp trưởng là học sinh nam có 22 cách.
- Chọn lớp phó văn nghệ là học sinh nữ có 18 cách.
- Chọn 2 bạn từ 38 học sinh còn lại và xếp vào 2 chỗ: phó bí thư và phó lao động, có: \(A^2_{38}\)
⇒ Có: \(22.18.A_{38}^2=556776\) (cách)
Đáp án A
Ta thấy trong các đối tượng ta cần chọn, thì chỉ có lớp phó phong trào không đòi hỏi điều kiện gì nên ta sẽ chọn ở bước sau cùng
Do đó chọn 1 ban cán sự ta cần thực hiện các bước sau
Bước 1: Chọn1 bạn nữ là lớp trưởng có 15 cách
Bước 2: Chọn 1 bạn nam làm lớp phó học tập có 18 cách
Bước 3: Chọn1 bạn nữ là thủ quỹ có 14 cách
Bước 4: Chọn 1 người trong số còn lại làm lớp phó phong trào có 30 cách
Vậy tất cả có cách cử 1 ban cán sự
Đáp án : D
Ta cần thực hiện 2 công việc:
Chọn một học sinh nam: có 20 cách chọn.
Chọn một học sinh nữ: có 22 cách chọn.
Theo quy tắc nhân: số cách chọn là 20.22=440 cách chọn.
Số phần tử của không gian mẫu là n(Ω) = 6!
Gọi A là biến cố 'nam ngồi đối diện nữ.'
Chọn chỗ cho học sinh nam thứ nhất có 6 cách.
Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)
Chọn chỗ cho học sinh nam thứ 3 có 2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ hai).
Xếp chỗ cho 3 học sinh nữ : 3! cách.
=> n(A) = 6.4.2.3! = 288
Vậy P(A) = 288/6!
Số cách chọn 3 bạn đều là nam: \(A_8^3\)
Số cách chọn 3 bạn đều là nữ: \(A_{11}^3\)
Số cách thỏa mãn: \(A_{11}^3+A_8^3=1326\) cách