Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cách chọn 4 học sinh làm 4 tổ trưởng là:
Số cách chọn 4 học sinh làm tổ trưởng trong đó không có học sinh nữ được chọn là
Số cách chọn 4 học sinh làm tổ trưởng trong đó không có học sinh nam được chọn là:
Vậy số cách chọn thỏa yêu cầu bài toán:
Chọn C.
Số cách chia lớp thành 3 tổ thỏa yêu cầu có 3 trường hợp
* TH1: Tổ 1 có 3 nữ, 7 nam có cách chọn
Tổ 2 có 2 nữ, 9 nam có cách chọn
Tổ 3 có 2 nữ, 10 nam có cách chọn
Vậy có cách chia thành 3 tổ trong TH này
* TH2: Tổ 2 có 3 nữ và hai tổ còn lại có 2 nữ, tương tự tính được cách chia.
* TH3: Tổ 3 có 3 nữ và hai tổ còn lại có 2 nữ, tương tự tính được cách chia.
Vậy có tất cả cách chia
Chọn D.
Mỗi tổ ít nhất 2 nữ \(\Rightarrow\) ta có 3 trường hợp: (2;2;3); (2;3;2); (3;2;2)
TH1: (2;2;3)
Tổ 1: chọn 2 nữ từ 7 nữ có \(C_7^2\) cách, chọn 8 nam từ 26 nam có \(C_{26}^8\) cách
Tổ 2: chọn 2 nữ từ 5 nữ còn lại: \(C_5^2\) ; chọn 9 nam từ 18 nam còn lại: \(C_{18}^9\)
Tổ 3: chọn 3 nữ từ 3 nữ còn lại: \(C_3^3\) ; chọn 9 nam từ 9 nam còn lại: \(C_9^9\)
\(\Rightarrow C_7^2.C_{26}^8+C_5^3.C_{18}^8+C_2^2.C_{10}^{10}\)
Hoàn toàn tương tự, ở TH2 ta được số cách:
\(C_7^2.C_{26}^8+C_5^3.C_{18}^9+C_2^2.C_9^9\)
TH3 ta được số cách: \(C_7^3.C_{26}^7+C_4^2.C_{19}^9+C_2^2.C_{10}^{10}\)
Cộng 3 trường hợp lại ta được kết quả cần tìm
Số cách chia lớp thành 3 tổ thỏa yêu cầu có 3 trường hợp
* TH1: Tổ 1 có 3 nữ, 7 nam có C 7 3 C 26 7 cách chọn
Tổ 2 có 2 nữ, 9 nam có C 4 2 C 19 9 cách chọn
Tổ 3 có 2 nữ, 10 nam có C 2 2 C 10 10 cách chọn
Vậy có C 7 3 C 26 7 C 4 2 C 19 9 cách chia thành 3 tổ trong TH này
* TH2: Tổ 2 có 3 nữ và hai tổ còn lại có 2 nữ, tương tự tính được C 7 2 C 26 8 C 5 3 C 18 8 cách chia.
* TH3: Tổ 3 có 3 nữ và hai tổ còn lại có 2 nữ, tương tự tính được C 7 2 C 26 8 C 5 2 C 18 9 cách chia.
Vậy có tất cả C 7 3 C 26 7 C 4 2 C 19 9 + C 7 2 C 26 8 C 5 3 C 18 8 + C 7 2 C 26 8 C 5 2 C 18 9 cách chia.
Chọn D.
Chọn D
Theo yêu cầu bài toán thì chọn ra 2 học sinh từ 10 học sinh có quan tâm đến chức vụ của mỗi người nên mỗi cách chọn sẽ là một chỉnh hợp chập 2 của 10 phần tử.
Ta thực hiện các công đoạn sau:
Bước 1: Chọn 1 nam trong 7 nam làm tổ trưởng, có cách.
Bước 2: Chọn 1 nữ trong 6 nữ làm thủ quỹ, có cách.
Bước 3: Chọn 1 tổ phó trong 11 bạn còn lại (bỏ 2 bạn đã chọn ở bước 1 và bước 2), có cách.
Bước 4: Chọn 2 tổ viên trong 10 bạn còn lại (loại 3 bạn đã chọn ở trên), có cách.
Theo quy tắc nhân có cách chọn một tổ thỏa yêu cầu.
Chọn A
TH1. Tổ công tác gồm 2 nam và 3 nữ có số cách chọn \(C^2_{12}.C^3_{18}\)
TH2. Tổ công tác gồm 1 nam và 4 nữ có số cách chọn \(C^1_{12}.C^4_{18}\)
TH3. Tổ công tác chỉ gồm 5 nữ có số cách chọn \(C^5_{18}\)
Tổng số cách là: \(C^2_{12}.C^3_{18}\)+ \(C^1_{12}.C^4_{18}\)+ \(C^5_{18}\)= bấm máy nhé
Chọn A
Mỗi cách chọn ra 3 học sinh từ 40 học sinh để làm tổ trưởng tổ 1, tổ 2, tổ 3 là một chỉnh hợp chập 3 của 40 phần tử, vậy có: A 40 3 (cách).
Lời giải:
Số cách chia tổ là:
$C^{10}_{50}.C^{10}_{40}.C^{10}_{30}.C^{10}_{20}.C^{10}_{10}$
Đáp án : B
Giáo viên chủ nhiệm có 4 phương án lựa chọn:
Học sinh tổ 1: có 9 cách.
Học sinh tổ 2: có 8 cách.
Học sinh tổ 3: có 9 cách.
Học sinh tổ 4: có 10 cách.
Theo quy tắc cộng; có 9+8+9+10=36 cách chọn.