K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 3 2021

a.

ĐKXĐ: \(x\ge-5\)

\(\Leftrightarrow\left(x^2-5x+6\right)\left(\sqrt{x+5}+4\right)=\left(3x+5\right)\left(x^2-5x+6\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+6=0\\\sqrt{x+5}+4=3x+5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\\sqrt{x+5}=3x+1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{3}\\x+5=9x^2+6x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{3}\\9x^2+5x-4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=\dfrac{4}{9}\end{matrix}\right.\)

NV
22 tháng 3 2021

b. Bạn coi lại đề, pt này nghiệm rất xấu

c.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

22 tháng 1 2020

\(\left\{ \begin{array}{l} {x^2} + \dfrac{x}{{x + 1}} = \left( {y + 2} \right)\sqrt {\left( {x + 1} \right)\left( {y + 1} \right)} \\ 3{x^2} - 8x - 3 = 4\left( {x + 1} \right)\sqrt {y + 1} \end{array} \right.\left( {x,y \in \mathbb{R} } \right)\)

Điều kiện: \(\left\{{}\begin{matrix}x\ge-1\\y\ge-1\end{matrix}\right.\)

\(\begin{array}{l} \left( 1 \right) \Leftrightarrow \dfrac{{{x^3} + {x^2} + x}}{{x + 1}} = \left( {y + 2} \right)\sqrt {\left( {x + 1} \right)\left( {y + 1} \right)} \\ \Leftrightarrow \dfrac{{{x^3} + x\left( {x + 1} \right)}}{{\left( {x + 1} \right)\sqrt {x + 1} }} = \left( {y + 2} \right)\sqrt {y + 1} \\ \Leftrightarrow {\left( {\dfrac{x}{{\sqrt {x + 1} }}} \right)^3} + \dfrac{x}{{\sqrt {x + 1} }} = {\left( {\sqrt {y + 1} } \right)^2} + \sqrt {y + 1} \end{array}\)

Xét hàm số \(f\left(t\right)=t^3+t\) trên $\mathbb{R}$ có \(f'\left(t\right)=3t^2+1>0\forall t\in\) $\mathbb{R}$ suy ra $f(t)$ đồng biến trên $\mathbb{R}$. Nên \(f\left( {\dfrac{x}{{\sqrt {x + 1} }}} \right) = f\left( {\sqrt {y + 1} } \right) \Leftrightarrow \dfrac{x}{{\sqrt {x + 1} }} = \sqrt {y + 1} . \) Thay vào $(2)$ ta được \(3x^2-8x-3=4x\sqrt{x+1}\)

\(\begin{array}{l} \Leftrightarrow {\left( {2x - 1} \right)^2} = {\left( {x + 2\sqrt {x + 1} } \right)^2}\\ \Leftrightarrow \left[ \begin{array}{l} 2\sqrt {x + 1} = x - 1\\ 2\sqrt {x + 1} = 1 - 3x \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} x \ge 1\\ {x^2} - 6x - 3 = 0 \end{array} \right.\\ \left\{ \begin{array}{l} x \le \dfrac{1}{3}\\ 9{x^2} - 10x - 3 = 0 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 3 + 2\sqrt 3 \\ x = \dfrac{{5 - 2\sqrt {13} }}{9} \end{array} \right. \end{array}\)

Ta có \(y = \dfrac{{{x^2}}}{{x + 1}} - 1 \)

Với \(x = 3 + 2\sqrt 3 \Rightarrow y = \dfrac{{4 + 3\sqrt 3 }}{2};x = \dfrac{{5 - 2\sqrt {13} }}{9} \Rightarrow y = - \dfrac{{41 + 7\sqrt {13} }}{{72}} \)

Các nghiệm này thỏa mãn điều kiện.

Vậy...

27 tháng 10 2019

Sửa đề : \(x^2+3=..\) nhé