Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
1,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)\left(x+y\right)=0\\\sqrt{2x}+\sqrt{y+1}=2\left(\circledast\right)\end{matrix}\right.\)
\(\left(x-2y\right)\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-y\end{matrix}\right.\)
Th1:\(x=2y\) Thay vào \(\left(\circledast\right)\) , ta có :
\(\sqrt{4y}+\sqrt{y+1}=2\)
\(\Leftrightarrow2-2\sqrt{y}=\sqrt{y+1}\)\(\Leftrightarrow3y-8\sqrt{y}+3=0\)
Giải pt thu được (x;y)
Th2:x=-y thay vào \(\left(\circledast\right)\), ta có
\(\sqrt{-2x}+\sqrt{y+1}=2\)
Xét đk ta thấy:\(y\le0;y\ge-1\)(vô nghiệm)
Vậy ....
2,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-1\right)\left(x+y^2\right)=0\\\sqrt{x}+\sqrt{y+1}=2\end{matrix}\right.\)
\(\left(x-y-1\right)\left(x+y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y+1\\x=-y^2\end{matrix}\right.\)
Th1:\(x=y+1\)
Thay vào ta có:\(\sqrt{x}+\sqrt{x}=2\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)
Th2:\(x=-y^2\)thay vào ta có:
\(\sqrt{-y^2}+\sqrt{y+1}=2\)
vì \(-y^2\le0\) mà nhận thấy y=0 ko là nghiệm của pt
\(\Rightarrow\)Pt vô nghiệm
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
\(1,HPT\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)+\left(\dfrac{1}{y}-\dfrac{1}{x}\right)=0\\2y=x^3+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\dfrac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\2y=x^3+1\end{matrix}\right.\\ \Leftrightarrow2y=y^3+1\Leftrightarrow y^3-2y+1=0\\ \Leftrightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{-1+\sqrt{5}}{2}\\y=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(0;0\right);\left(\dfrac{-1+\sqrt{5}}{2};\dfrac{-1+\sqrt{5}}{2}\right);\left(\dfrac{-1-\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right)\)
\(2,HPT\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x^2+y^2\right)}+2\sqrt{xy}=16\\x+y+2\sqrt{xy}=16\end{matrix}\right.\\ \Leftrightarrow\sqrt{2\left(x^2+y^2\right)}=x+y\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\\ \Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\)
Vậy \(\left(x;y\right)=\left(4;4\right)\)
\(3,\text{Sửa: }\left\{{}\begin{matrix}\sqrt{x^2+3}+\left|y\right|=\sqrt{3}\left(1\right)\\\sqrt{y^2+5}+\left|x\right|=\sqrt{x^2+5}\left(2\right)\end{matrix}\right.\)
Ta thấy \(\sqrt{x^2+3}\ge\sqrt{3};\left|y\right|\ge0\Leftrightarrow VT\left(1\right)\ge\sqrt{3}=VP\left(1\right)\)
Dấu \("="\Leftrightarrow x=y=0\)
Thay vào \(\left(2\right)\Leftrightarrow\sqrt{5}+0=\sqrt{5}\left(tm\right)\)
Vậy \(\left(x;y\right)=\left(0;0\right)\)
\(\left\{ \begin{array}{l} {x^2} + \dfrac{x}{{x + 1}} = \left( {y + 2} \right)\sqrt {\left( {x + 1} \right)\left( {y + 1} \right)} \\ 3{x^2} - 8x - 3 = 4\left( {x + 1} \right)\sqrt {y + 1} \end{array} \right.\left( {x,y \in \mathbb{R} } \right)\)
Điều kiện: \(\left\{{}\begin{matrix}x\ge-1\\y\ge-1\end{matrix}\right.\)
\(\begin{array}{l} \left( 1 \right) \Leftrightarrow \dfrac{{{x^3} + {x^2} + x}}{{x + 1}} = \left( {y + 2} \right)\sqrt {\left( {x + 1} \right)\left( {y + 1} \right)} \\ \Leftrightarrow \dfrac{{{x^3} + x\left( {x + 1} \right)}}{{\left( {x + 1} \right)\sqrt {x + 1} }} = \left( {y + 2} \right)\sqrt {y + 1} \\ \Leftrightarrow {\left( {\dfrac{x}{{\sqrt {x + 1} }}} \right)^3} + \dfrac{x}{{\sqrt {x + 1} }} = {\left( {\sqrt {y + 1} } \right)^2} + \sqrt {y + 1} \end{array}\)
Xét hàm số \(f\left(t\right)=t^3+t\) trên $\mathbb{R}$ có \(f'\left(t\right)=3t^2+1>0\forall t\in\) $\mathbb{R}$ suy ra $f(t)$ đồng biến trên $\mathbb{R}$. Nên \(f\left( {\dfrac{x}{{\sqrt {x + 1} }}} \right) = f\left( {\sqrt {y + 1} } \right) \Leftrightarrow \dfrac{x}{{\sqrt {x + 1} }} = \sqrt {y + 1} . \) Thay vào $(2)$ ta được \(3x^2-8x-3=4x\sqrt{x+1}\)
\(\begin{array}{l} \Leftrightarrow {\left( {2x - 1} \right)^2} = {\left( {x + 2\sqrt {x + 1} } \right)^2}\\ \Leftrightarrow \left[ \begin{array}{l} 2\sqrt {x + 1} = x - 1\\ 2\sqrt {x + 1} = 1 - 3x \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} x \ge 1\\ {x^2} - 6x - 3 = 0 \end{array} \right.\\ \left\{ \begin{array}{l} x \le \dfrac{1}{3}\\ 9{x^2} - 10x - 3 = 0 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 3 + 2\sqrt 3 \\ x = \dfrac{{5 - 2\sqrt {13} }}{9} \end{array} \right. \end{array}\)
Ta có \(y = \dfrac{{{x^2}}}{{x + 1}} - 1 \)
Với \(x = 3 + 2\sqrt 3 \Rightarrow y = \dfrac{{4 + 3\sqrt 3 }}{2};x = \dfrac{{5 - 2\sqrt {13} }}{9} \Rightarrow y = - \dfrac{{41 + 7\sqrt {13} }}{{72}} \)
Các nghiệm này thỏa mãn điều kiện.
Vậy...