K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

Chọn B.

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 1)

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 1)

Vậy khoảng cách từ điểm M(1;-1) đến đường thẳng Δ: 3x + y + 4 = 0 là Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 1)

16 tháng 7 2018

Giải bài 8 trang 81 SGK hình học 10 | Giải toán lớp 10

16 tháng 5 2021

Lấy A(5;4) \(\in\Delta\)

Dễ thấy : \(\Delta\) // \(\Delta\)'  . Suy ra : d(\(\Delta;\Delta\)') = d(A;\(\Delta\)') = \(\dfrac{\left|3.5-4-1\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{10}{\sqrt{10}}=\sqrt{10}\)

Chọn D 

 

10 tháng 4 2020

hello

10 tháng 4 2020

hello

26 tháng 2 2018

Đáp án C

8 tháng 12 2019

Khoảng cách từ điểm M (-2; 1) đến đường thẳng Δ là:

Giải bài tập Toán 10 | Giải Toán lớp 10

Khoảng cách từ điểm O (0; 0) đến đường thẳng Δ là:

Giải bài tập Toán 10 | Giải Toán lớp 10

NV
10 tháng 4 2020

Câu 2:

c/ DO M thuộc \(\Delta\) nên tọa độ M có dạng \(M\left(a;\frac{1-3a}{2}\right)\)

Áp dụng công thức khoảng cách:

\(\frac{\left|5a-\frac{3\left(1-3a\right)}{2}+2\right|}{\sqrt{5^2+3^2}}=5\)

\(\Leftrightarrow\left|13a+1\right|=10\sqrt{34}\)

\(\Leftrightarrow\left[{}\begin{matrix}13a+1=10\sqrt{34}\\13a+1=-10\sqrt{34}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=\frac{-1+10\sqrt{34}}{13}\\a=\frac{-1-10\sqrt{34}}{13}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(\frac{-1+10\sqrt{34}}{13};\frac{8-15\sqrt{34}}{13}\right)\\M\left(\frac{-1-10\sqrt{34}}{13};\frac{8+15\sqrt{34}}{13}\right)\end{matrix}\right.\)

d/ Chẳng hiểu đề câu d là gì luôn? Cái gì bằng 2 lần khoảng cách từ N đến d bạn

NV
10 tháng 4 2020

Câu 2:

a/ Khoảng cách:

\(d\left(A;\Delta\right)=\frac{\left|3.5+2.4-1\right|}{\sqrt{3^2+2^2}}=\frac{22\sqrt{13}}{13}\)

b/ Gọi \(M\left(x;y\right)\) là 1 điểm thuộc đường phân giác

\(\Rightarrow d\left(M;\Delta\right)=d\left(M;d\right)\)

\(\Rightarrow\frac{\left|3x+2y-1\right|}{\sqrt{3^2+2^2}}=\frac{\left|5x-3y+2\right|}{\sqrt{5^2+3^2}}\)

\(\Leftrightarrow\sqrt{34}\left|3x+2y-1\right|=\sqrt{13}\left|5x-3y+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{34}\left(3x+2y-1\right)=\sqrt{13}\left(5x-3y+2\right)\\\sqrt{34}\left(3x+2y-1\right)=-\sqrt{13}\left(5x-3y+2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(3\sqrt{34}-5\sqrt{13}\right)x+\left(2\sqrt{34}+3\sqrt{13}\right)y-\sqrt{34}-2\sqrt{13}=0\\\left(3\sqrt{34}+5\sqrt{13}\right)x+\left(2\sqrt{34}-3\sqrt{13}\right)y-\sqrt{34}+2\sqrt{13}=0\end{matrix}\right.\)

8 tháng 10 2019

Đáp án D

21 tháng 5 2019

Lấy điểm M( x0; 1-2x0)  nằm trên d.

Từ giả thiết ta có:

 

Chọn C.