Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích đa thức bậc 2: \(ax^2+bx+c\)\(\left(a\ne0\right)\)
Nếu \(a+b+c=0\)\(\Rightarrow b=-\left(a+c\right)\)
Nếu \(a-b+c=0\)\(\Rightarrow b=a+c\)
Với \(b^2\ge4ac\)thì ta tách thành \(b=b_1+b_2\)và \(b_1.b_2=ac\)
Dùng máy tính dự đoán nghiệm:
- Viết đa thức gồm cả biến x vào máy tính
- Bấm phím " calc "
- Sau đó nhập giá trị của x rồi bấm " = "
- Nếu kết quả bằng 0 thì biến x đã nhập là nghiệm
giải giúp mình bài nay bằng máy tính casio hộ mình nha(nhớ giải chi tiết hộ mình)
tính: \(1023456^3\)
Lương Tịch bn tham khảo nha
I > Phương pháp dự đoán và quy nạp :
Trong một số trường hợp khi gặp bài toán tính tổng hữu hạn
Sn = a1 + a2 + .... an (1)
Bằng cách nào đó ta biết được kết quả (dự đoán , hoặc bài toán chứng minh khi đã cho biết kết quả). Thì ta nên sử dụng phương pháp này và hầu như thế nào cũng chứng minh được .
Ví dụ 1 : Tính tổng Sn =1+3+5 +... + (2n -1 )
Thử trực tiếp ta thấy : S1 = 1
S2 = 1 + 3 =22
S3 = 1+ 3+ 5 = 9 = 32
... ... ...
Ta dự đoán Sn = n2
Với n = 1;2;3 ta thấy kết quả đúng
giả sử với n= k ( k 1) ta có Sk = k 2 (2)
ta cần phải chứng minh Sk + 1 = ( k +1 ) 2 ( 3)
Thật vậy cộng 2 vế của ( 2) với 2k +1 ta có
1+3+5 +... + (2k – 1) + ( 2k +1) = k2 + (2k +1)
vì k2 + ( 2k +1) = ( k +1) 2 nên ta có (3) tức là Sk+1 = ( k +1) 2
theo nguyên lý quy nạp bài toán được chứng minh
vậy Sn = 1+3=5 + ... + ( 2n -1) = n2
Tương tự ta có thể chứng minh các kết quả sau đây bằng phương pháp quy nạp toán học .
1, 1 + 2+3 + .... + n =
2, 12 + 2 2 + ..... + n 2 =
3, 13+23 + ..... + n3 =
4, 15 + 25 + .... + n5 = .n2 (n + 1) 2 ( 2n2 + 2n – 1 )
kết quả đúng là 1,519821606041,bằng lời giải CASIO nha
TK CHO MK NHA BẠN
lan anh le trình bày số cụ thể chứ không phải ......41 đâu bn
ta có 12 - 22 = - 3
32 - 42 = - 7
.................
20052 - 20062 = -4011
-{(4011+3)[(4011-3):4+1]:2} = -2013021
Tham khảo :
a) \(\hept{\begin{cases}x-y=14\\3x-4y=1\end{cases}}\)
b) \(\hept{\begin{cases}14x+27y=25\\4x+y=1\end{cases}}\)
Nếu đặt u = x 2 − 1 thì x 2 = u + 1 nên phương trình có dạng
( 2 + 2)u = 2(u + 1) − 2 (1)
Ta giải phương trình (1):
(1) ⇔ 2 u + 2u = 2u + 2 − 2
⇔ 2 u = 2 − 2
⇔ 2 u = 2 ( 2 − 1) ⇔ u = 2 − 1
⇔ x 2 − 1 = 2 − 1
⇔ x 2 = 2
⇔ x = 1