Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
OA=2\(\sqrt{2}\)
\(\Rightarrow\)AC=(2\(\sqrt{2}\)).2=4\(\sqrt{2}\)
\(\Rightarrow\)AD2+CD2=AC2(định lí Py-ta-go)
\(\Leftrightarrow\)AD2+CD2=(4\(\sqrt{2}\))2
\(\Leftrightarrow\)AD2+CD2=32
Mà AD=CD(đl)
\(\Rightarrow\)2(AD)2=32
\(\Rightarrow\)AD2=32/2=16
\(\Rightarrow\)AD=\(\sqrt{16}\)=4
Vậy độ dài cạnh của hình vuông là 4cm
Câu 1:
\(Q=a^2+4b^2-10a\)
\(=a^2-10a+25+4b^2-25\)
\(=\left(a-5\right)^2+4b^2-25\)
\(\left(a-5\right)^2\ge0\)
\(4b^2\ge0\)
\(\Rightarrow\left(a-5\right)^2+4b^2-25\ge-25\)
Dấu ''='' xảy ra khi \(\left[\begin{array}{nghiempt}a-5=0\\b=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=5\\b=0\end{array}\right.\)
\(MinQ=-25\Leftrightarrow a=5;b=0\)
Câu 2:
Tam giác DAC vuông tại D có:
\(AC^2=CD^2+AD^2\)
\(=CD^2+CD^2\) (ABCD là hình vuông)
\(=2CD^2\)
\(=2\times\left(3\sqrt{2}\right)^2\)
\(=2\times9\times2\)
\(=36\)
\(AC=\sqrt{36}=6\left(cm\right)\)
Câu 3:
\(\frac{1}{a-1}=1\)
\(a-1=1\)
\(a=1+1\)
\(a=2\)
Thay a = 2 vào P, ta có:
\(P=\frac{2-2\times2\times b-b}{2\times2+3\times2\times b-b}\)
\(=\frac{2-4b-b}{4+6b-b}\)
\(=\frac{2-5b}{4+5b}\)
Độ dài đường chéo là ( áp dụng định lý Pitago cho tam giác vuông ADC ):
AC2 = 2CD2 (vì AD = CD)
=> AC2 = \(\left(3\sqrt{2}\right)^2\) = 18
=> AC = \(\sqrt{18}\)
cảm ơn nha