Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,hpt\Leftrightarrow\hept{\begin{cases}\frac{9x}{7}-\frac{2y}{3}=-28\\\frac{3x}{2}+\frac{12y}{5}=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}27x-14y=-588\\15x+24y=150\end{cases}\Leftrightarrow}\hept{\begin{cases}9x-\frac{14}{3}y=-196\\5x+8y=50\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}45x-\frac{70}{3}y=-980\\45x+72y=450\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{286}{3}y=1430\\45x+72y=450\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}y=15\\x=-14\end{cases}}\)
\(\hept{\begin{cases}x+y=\frac{4x-3}{5}\\x+3y=\frac{15-9y}{14}\end{cases}\Leftrightarrow\hept{\begin{cases}x+y-\frac{4x}{5}=-\frac{3}{5}\\x+3y+\frac{9y}{14}=\frac{15}{14}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{5}+y=-\frac{3}{5}\\x+\frac{51y}{14}=\frac{15}{14}\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x+5y=-3\\x+\frac{51y}{14}=\frac{15}{14}\end{cases}\Leftrightarrow5y-\frac{51y}{14}=-3-\frac{15}{14}\Leftrightarrow\frac{19}{14}y=-\frac{57}{14}\Rightarrow y=-3}\)
\(x-15=-3\Rightarrow x=12\)
Vậy \(x=12;y=-3\)
\(\hept{\begin{cases}x+y=\frac{4x-3}{5}\\x+3y=\frac{15-9y}{14}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x+5y=4x-3\\14x+42y=15-9y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+5y=-3\\14x+51y=15\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}14x+70y=-42\\14x+51y=15\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}19y=-57\\14x+51y=15\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-\frac{57}{19}\\x=12\end{cases}}\)
Vậy hpt có nghiệm \(\left(x;y\right)=\left(12;-\frac{57}{19}\right)\)
c. \(\hept{\begin{cases}xy-\frac{x}{y}=9,6\left(1\right)\\xy-\frac{y}{x}=7,5\left(2\right)\end{cases}}\)
Lấy (1)-(2) ta có \(\frac{y}{x}-\frac{x}{y}=\frac{21}{10}\)\(\Rightarrow\)\(\frac{y^2-x^2}{xy}=\frac{21}{10}\Rightarrow10y^2-21xy-10x^2=0\Rightarrow\left(5y+2x\right)\left(2y-5x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5y+2x=0\\2y-5x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{2}y\\x=\frac{2}{5}y\end{cases}}}\)
Với \(x=-\frac{5}{2}y\Rightarrow\left(-\frac{5}{2}y\right)y-\frac{-\frac{5}{2}y}{y}=9,6\Rightarrow-\frac{5}{2}y^2=\frac{71}{10}\Rightarrow y^2=-\frac{71}{25}\left(l\right)\)
Với \(x=\frac{2}{5}y\Rightarrow\frac{2}{5}y.y-\frac{\frac{2}{5}y}{y}=9,6\Rightarrow\frac{2}{5}y^2=10\Rightarrow y^2=25\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)
Vậy \(\left(x,y\right)=\left(2,5\right);\left(-2,-5\right)\)
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
ĐK: \(x+y\ne0;x\ge2\)
\(\hept{\begin{cases}\frac{4}{x+y}+3\sqrt{4x-8}=14\\\frac{5-x-y}{x+y}-2\sqrt{x-2}=\frac{-5}{2}\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{4}{x+y}+6\sqrt{x-2}=14\\\frac{5}{x+y}-2\sqrt{x-2}=\frac{-3}{2}\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{4}{x+y}+6\sqrt{x-2}=14\\\frac{5}{x+y}-2\sqrt{x-2}=\frac{-3}{2}\end{cases}}\)
Đặt: \(\frac{1}{x+y}=u\ne0;\sqrt{x-2}=v\ge0\)
ta có hệ: \(\hept{\begin{cases}4u+6v=14\\5u-2v=\frac{-3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}u=\frac{1}{2}\\v=2\end{cases}}\)thỏa mãn
khi đó ta có: \(\hept{\begin{cases}\frac{1}{x+y}=\frac{1}{2}\\\sqrt{x-2}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=6\end{cases}}\)thỏa mãn
Vậy:...
\(a,\hept{\begin{cases}\frac{x}{3}-\frac{y}{4}=2\\\frac{2x}{5}+y=18\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x-\frac{1}{4}\left(18-\frac{2}{5}x\right)=2\\y=18-\frac{2}{5}x\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x-\frac{9}{2}+\frac{1}{10}x=2\\y=18-\frac{2}{5}x\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{13}{30}x=\frac{13}{2}\\y=18-\frac{2}{5}x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=15\\y=18-\frac{2}{5}.15\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=12\end{cases}}}\)
\(b,\hept{\begin{cases}\frac{3}{4}x+\frac{2}{5}y=2,3\\x-\frac{3y}{5}=0,8\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{3}{4}\left(0,8+\frac{3}{5}y\right)+\frac{2}{5}y=2,3\\x=0,8+\frac{3}{5}y\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}0,6+\frac{9}{20}y+\frac{2}{5}y=2,3\\x=0,8+\frac{3}{5}y\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{17}{20}y=1,7\\x=0,8+\frac{3}{5}y\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2\\x=0,8+\frac{3}{5}.2\end{cases}\Leftrightarrow\hept{\begin{cases}y=2\\x=2\end{cases}}}\)
5x+5y= 4x-3
x+5y = -3
Mà x+3y = 3/7
Suy ra:(x+5y)- (x+3y) = -3-3/7
2y= -24/7
y= -12/7
Thay y =12/7 vào biểu thức: x+3y= 3/7
Suy ra x+ 36/7= 3/7
x= -33/7
Từ hệ 1 suy ra: 5x + 5y = 4x-3 <=> x + 5y = -3
Bấm Mode Setup ->5->1
x=39/7
y=-12/7