K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

A B C P E D Q F R

            ( Hình ko chính xác đâu nha )

                                CM

Vẽ về phía ngoài tam giác ABC dựng tam giác đều ACQ và tam giác RBC cân tại R sao cho \(\widehat{BRC}=120^0\)

\(\Rightarrow\hept{\begin{cases}DB=DC\\RB=RC\end{cases}}\)

\(\Rightarrow DR\)là đường trung trực BC ( tc)

          mà tam giác DBC cân tại D ( gt)

\(\Rightarrow DR\)là phân giác của \(\widehat{BDC}\left(tc\right)\)

\(\Rightarrow\widehat{BDR}=\frac{1}{2}\widehat{BDC}=60^0\)

Ta có: \(\widehat{DBR}=\widehat{DBC}+\widehat{RBC}\left(h.ve\right)\)

                      \(=30^0+30^0\)

                      \(=60^0\)mà BD = BR (cmt)

\(\Rightarrow\Delta BDR\)là tam giác đều ( dấu hiệu nhận biết )

Vì \(\Delta APB\)đều ( gt)

\(\Rightarrow BP=BA\left(đn\right)\)

Ta có: \(\widehat{PBD}=\widehat{PBA}+\widehat{ABD}\left(h.ve\right)\)

                       \(=60^0+\widehat{ABD}\left(1\right)\)

Lại có: \(\widehat{ABR}=\widehat{DBR}+\widehat{ABD}\left(h.ve\right)\)

                       \(=60^0+\widehat{ABD}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{PBD}=\widehat{ABR}\)

 Xét \(\Delta BPD\)và \(\Delta BAR\)có:

       \(\hept{\begin{cases}\widehat{PBD}=\widehat{ABR}\left(cmt\right)\\PB=BA\left(cmt\right)\\BD=BR\left(cmt\right)\end{cases}\Rightarrow\Delta BPD=\Delta BAR\left(c-g-c\right)}\)

\(\Rightarrow\hept{\begin{cases}DP=RA\left(2canhtuongung\right)\left(3\right)\\\widehat{BDP}=\widehat{BRA}\left(2goctuongung\right)\end{cases}}\)

CM tương tự ta có \(\Delta CRA=\Delta CDQ\left(c-g-c\right)\)( bạn tự CM nhé nó tương tự )

\(\Rightarrow\hept{\begin{cases}DQ=RA\left(2canhtuongung\right)\left(4\right)\\\widehat{QDC}=\widehat{ARC}\left(2goctuongung\right)\end{cases}}\)

Từ (3) và (4) \(\Rightarrow DP=DQ=RA\)

Ta có: \(\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{PDB}+\widehat{QDC}\right)\)

   mà \(\widehat{BDP}=\widehat{BRA};\widehat{QDC}=\widehat{ARC}\left(cmt\right)\)

\(\Rightarrow\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{BRA}+\widehat{CRA}\right)\)

                \(=360^0-\widehat{BDC}-\widehat{BRC}\)

                \(=360^0-120^0-120^0\)

               \(=120^0\)

       

(Chỗ này mình hướng dẫn bạn tự làm típ  nhé)

từ đó tam giác DPQ cân tại D và góc PDQ=1200 . Kết hợp với giả thiết tam giác DEF cân tại D có góc EDF=1200

\(\Rightarrow\Delta DFP=\Delta DEQ\left(c-g-c\right)\)

\(\Rightarrow EQ=FP\left(2canhtuongung\right)\)

Dễ thấy EQ=EC nên PF=CE.

     

12 tháng 4 2019

mình hiểu rồi thanks bạn nhiều 

16 tháng 7 2018

A B C D I K y x

a) Ta có AB = AC => ABC là tg cân ( cân tại A)

Xét \(\Delta ABD\)Và \(\Delta ACD\)

    \(\widehat{ACD}=\widehat{ABD}\)( TAM GIÁC CÂN )

\(AC=AB\)

    AD LÀ CẠNH CHUNG 

=>  2 tam giác = nhau ( c.g.c )

b) Ta có  Ay//BC 

=>  \(\widehat{yAC}=\widehat{ACB}\)( SO LE TRONG )

Mà \(\widehat{ACB}=\widehat{ABC}\)

=> \(\widehat{yAC}=\widehat{ABC}\)

c) Ta có tg ABC cân 

=> AD là đg phân giác cũng là đường cao

=> \(AD\perp BC\)

MÀ  \(Cx\perp BC\)

=> AD//Cx

d) Ta có Ay ( AK) //BC 

Mà \(\widehat{ADC}=90^O\)

=> \(DA\perp Ay\)

Tứ giác AKCD là hình chữ nhâtk

mà theo tính chất của hình chữ nhật ( 2 đường chéo cắt nhau tại trung điểm của mỗi đường )

=> I là trung điểm của DK

\(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)(t/c)

=> \(\widehat{B}=\widehat{C}\)=50o

=> \(\widehat{A}\)=80o

Ta lại có : \(\widehat{ABK}+\widehat{KBC}=\widehat{ABC}\)

<=> \(\widehat{ABK}=50^{o^{ }^{ }}-10^o=40^o\)

Xét \(\Delta ABK\)

\(\widehat{A}+\widehat{ABK}+\widehat{AKB}=180^o\)

=> \(\widehat{AKB}=180^0-\left(40^0+80^o\right)=40^o\)

=>\(\widehat{ABK}=\widehat{AKB}\)=> \(\Delta ABK\)cân (đpcm)