Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
em làm được những phần nào rồi
còn phần nào để ah chỉ cho
Em tham khảo nha
Chắc em chưa học hbh
Giải :
a) Ta có: góc FAB + góc BAC = 90 độ
góc EAC + góc BAC = 90 độ
=> Góc FAB = góc EAC
AF=AC; AB=AE
=> Tam giác AFB = tam giác ACE
=> FB=EC
b) Lấy K sao cho M là trung điểm của AK thì ta có ACKB là hình bình hành nên góc ACB =180* - góc BAC. Ta cũng tính dc góc FAE= 180* - góc BAC ( tổng của BAC với 2 lần góc CAE, mà góc CAE=90* -góc BAC). Thêm với AC=AF , CK=AE (=AB) nên tam giác ACK = tam giác FAE nên AK=EF mà AK=2AM nên EF=2AM
c) Gọi H là giao của AM và EF. Tam giác ACK = tam giác FAE nên góc CAK = góc AFE, mà góc CAK phụ với góc MAF nên góc AFE cũng phụ góc MAF. Xét trong tam giác AHF có góc F và góc A phụ nhau nên tam giác AHF vuông tại H suy ra AM vuông góc với EF.
Ta thấy: \(\widehat{AEF}=\widehat{EFD}\Rightarrow\frac{1}{2}\widehat{AEF}=\frac{1}{2}\widehat{EFD}\Leftrightarrow\widehat{FEm}=\widehat{EFn}\)
Mà 2 góc này có vị trí đồng vị.
=>Em // Fn
( Hình ko chính xác đâu nha )
CM
Vẽ về phía ngoài tam giác ABC dựng tam giác đều ACQ và tam giác RBC cân tại R sao cho \(\widehat{BRC}=120^0\)
\(\Rightarrow\hept{\begin{cases}DB=DC\\RB=RC\end{cases}}\)
\(\Rightarrow DR\)là đường trung trực BC ( tc)
mà tam giác DBC cân tại D ( gt)
\(\Rightarrow DR\)là phân giác của \(\widehat{BDC}\left(tc\right)\)
\(\Rightarrow\widehat{BDR}=\frac{1}{2}\widehat{BDC}=60^0\)
Ta có: \(\widehat{DBR}=\widehat{DBC}+\widehat{RBC}\left(h.ve\right)\)
\(=30^0+30^0\)
\(=60^0\)mà BD = BR (cmt)
\(\Rightarrow\Delta BDR\)là tam giác đều ( dấu hiệu nhận biết )
Vì \(\Delta APB\)đều ( gt)
\(\Rightarrow BP=BA\left(đn\right)\)
Ta có: \(\widehat{PBD}=\widehat{PBA}+\widehat{ABD}\left(h.ve\right)\)
\(=60^0+\widehat{ABD}\left(1\right)\)
Lại có: \(\widehat{ABR}=\widehat{DBR}+\widehat{ABD}\left(h.ve\right)\)
\(=60^0+\widehat{ABD}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{PBD}=\widehat{ABR}\)
Xét \(\Delta BPD\)và \(\Delta BAR\)có:
\(\hept{\begin{cases}\widehat{PBD}=\widehat{ABR}\left(cmt\right)\\PB=BA\left(cmt\right)\\BD=BR\left(cmt\right)\end{cases}\Rightarrow\Delta BPD=\Delta BAR\left(c-g-c\right)}\)
\(\Rightarrow\hept{\begin{cases}DP=RA\left(2canhtuongung\right)\left(3\right)\\\widehat{BDP}=\widehat{BRA}\left(2goctuongung\right)\end{cases}}\)
CM tương tự ta có \(\Delta CRA=\Delta CDQ\left(c-g-c\right)\)( bạn tự CM nhé nó tương tự )
\(\Rightarrow\hept{\begin{cases}DQ=RA\left(2canhtuongung\right)\left(4\right)\\\widehat{QDC}=\widehat{ARC}\left(2goctuongung\right)\end{cases}}\)
Từ (3) và (4) \(\Rightarrow DP=DQ=RA\)
Ta có: \(\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{PDB}+\widehat{QDC}\right)\)
mà \(\widehat{BDP}=\widehat{BRA};\widehat{QDC}=\widehat{ARC}\left(cmt\right)\)
\(\Rightarrow\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{BRA}+\widehat{CRA}\right)\)
\(=360^0-\widehat{BDC}-\widehat{BRC}\)
\(=360^0-120^0-120^0\)
\(=120^0\)
(Chỗ này mình hướng dẫn bạn tự làm típ nhé)
từ đó tam giác DPQ cân tại D và góc PDQ=1200 . Kết hợp với giả thiết tam giác DEF cân tại D có góc EDF=1200
\(\Rightarrow\Delta DFP=\Delta DEQ\left(c-g-c\right)\)
\(\Rightarrow EQ=FP\left(2canhtuongung\right)\)
Dễ thấy EQ=EC nên PF=CE.
mình hiểu rồi thanks bạn nhiều