K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\left(\dfrac{a-1}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{a-4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

 

1 tháng 1 2022

undefined

10 tháng 10 2021

a. Giả sử: \(3+\sqrt{12}>\sqrt{16}\)

<=> \(\sqrt{12}>1\) (thỏa mãn)

Vậy \(3+\sqrt{12}>\sqrt{16}\)

b. \(4\sqrt{7}=\sqrt{4^2.7}=\sqrt{112}\)

\(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)

Ta thấy: 112 < 117

Vậy \(4\sqrt{7}< 3\sqrt{13}\)

11 tháng 10 2021

Cảm ơn bn nhiều

a) Thay m=3 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3y=3-3\cdot\dfrac{3}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)

15 tháng 5 2021

 làm câu b đc ko ạ

a) Thay m=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3\cdot\dfrac{3}{5}=\dfrac{15}{5}-\dfrac{9}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)

9 tháng 5 2022

A B C D E K H

a> Vì tam giác ABC vuông tại A => góc BAC = 90 hay BAD = 90

Vì DE \(\perp\) BC => BED =90

Xét tứ giác ABED có :

BAD +BED = 180

mà  góc ở vị trí đối diện 

=> Tứ giác ABED nội tiếp

=> Tâm của đường tròn nội tiếp tứ giác ABED  là trung điểm của cạnh BD

b> Vì góc BAC = 90 => ABC + ACB = 90  *

Vì AK \(\perp BC\)  =>KAB + ABK =90 **

Từ * và ** => ABK = ACB 

Mà góc ABK =góc BHK < tứ giác ABED nt>

=> góc ACB = góc BHK 

c> Xét  tam giác BKH và tam giác BDC có:

góc BHK = góc ACB cmt 

góc DBC Chung 

=> tam giác BKH đồng dạng vs tam giác BDC <g-g>

=> \(\dfrac{BK}{BD}=\dfrac{HK}{CD}\)

<=> \(\dfrac{BK}{HK}=\dfrac{BD}{CD}\)

=> BK.CD = HK . BD

 

9 tháng 5 2022

xg r nhé!

28 tháng 10 2016

\(\sqrt{51-7\sqrt{8}}=\sqrt{7^2-7.2\sqrt{2}+\left(\sqrt{2}\right)^2}=\sqrt{\left(7-\sqrt{2}\right)^2}=7-\sqrt{2}\)

(vì\(7=\sqrt{49}>\sqrt{2}\Rightarrow7-\sqrt{2}>0\))

28 tháng 10 2016

pt sao có 1 vé vậy bạn