Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
\(5x\left(x-3\right)-x+3=0\)
\(5x\left(x-3\right)-\left(x-3\right)=0\)
\(\left(5x-1\right)\left(x-3\right)=0\)
⇒\(\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
4:
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: AH=căn 9*16=12cm
AC=căn 12^2+16^2=20cm
HK=16*12/20=192/20=9,6cm
5:
a: Xét ΔMNP vuông tại N và ΔMHN vuông tại H có
góc M chung
=>ΔMNP đồng dạng với ΔMHN
b: NH=căn 16*9=12cm
NP=căn 16^2+12^2=20cm
HK=16*12/20=192/20=9,6cm
Cần phần đảo với phần giới hạn (nếu có) thôi nha mọi người, em làm được phần thuận rồi.
Thuận: Lấy M là trung điểm BC. Khi đó IM là đường trung bình của \(\Delta\)BHC => IM // HC
Vì HC vuông góc BH nên IM vuông góc BH hay ^BIM = 900 => I thuộc đường tròn (MB)
M là trung điểm đoạn BC cố định => BM cố định => I di chuyển trên (MB) cố định.
Đảo: M là trung điểm BC, đường tròn (BM) cắt BH tại I. Có ngay MI // CH
Xét \(\Delta\)CBH có: M là trung điểm BC, MI // HC, I thuộc BH => I là trung điểm BH.
Giới hạn: Xét A không trùng với B,C. Theo chứng minh phần thuận thì I nằm trên (BM)
Xét A trùng B: Khi đó AC trùng BC. Mà BH vuông góc AC tại H nên H trùng B => I trùng B
Xét A trùng C: Suy ra BH trùng BC. Khi đó trung điểm I của BH trùng với M
Vậy điểm I di động trên cả đường tròn đường kính BM.