Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi ABCD là tứ giác nội tiếp đường tròn.
- Trên cung nhỏ BC, ta có các góc nội tiếp ∠BAC = ∠BDC, và trên cung AB, ∠ADB = ∠ACB.
- Lấy 1 điểm K trên AC sao cho ∠ABK = ∠CBD;
- Từ ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, suy ra ∠CBK = ∠ABD.
- Do vậy tam giác △ABK đồng dạng với tam giác △DBC, và tương tự có △ABD ∼ △KBC.
- Suy ra: AK/AB = CD/BD, và CK/BC = DA/BD;
- Từ đó AK·BD = AB·CD, và CK·BD = BC·DA;
- Cộng các vế của 2 đẳng thức trên: AK·BD + CK·BD = AB·CD + BC·DA;
- Hay: (AK+CK)·BD = AB·CD + BC·DA;
- Mà AK+CK = AC, nên AC·BD = AB·CD + BC·DA; (điều phải chứng minh)
Định lí CEVA
Cho tam giác ABC với các điểm M, N, P khác A, B, C theo thứ tự thuộc BC, CA, AB. Khi đó các đường thẳng AM, BN. CP đồng quy hoặc đôi một song song khi chỉ khi \(\frac{\overline{MB}}{\overline{MC}}.\frac{\overline{NC}}{\overline{NA}}.\frac{\overline{PA}}{\overline{PB}}=-1\)
Bài làm:
ĐIỀU KIỆN CẦN
Trường hợp 1: AM, BN, CP đồng quy
Giả sử AM, BN, CP đồng quy tại O. Qua A vẽ đường thẳng song song với BC đường thẳng này cắt BN, CP lần lượt tại X, Y
Áp dụng Talet ta có:
\(\frac{\overline{MB}}{\overline{MC}}.\frac{\overline{NC}}{\overline{NA}}.\frac{\overline{PA}}{\overline{PB}}=\frac{\overline{AX}}{\overline{AY}}.\frac{\overline{BC}}{\overline{XA}}.\frac{\overline{YA}}{\overline{CB}}=\frac{\overline{AX}}{\overline{XA}}.\frac{\overline{BC}}{\overline{CB}}.\frac{\overline{YA}}{\overline{AY}}=\left(-1\right).\left(-1\right).\left(-1\right)=-1\)
Trường hợp 2: AM, BN, CP đôi một song song
Áp dụng TALET ta có:
\(\frac{\overline{MB}}{\overline{MC}}.\frac{\overline{NC}}{\overline{NA}}.\frac{\overline{PA}}{\overline{PB}}=\frac{\overline{MB}}{\overline{MC}}.\frac{\overline{BC}}{\overline{BM}}.\frac{\overline{CM}}{\overline{CB}}=\frac{\overline{MB}}{\overline{BM}}.\frac{\overline{BC}}{\overline{CB}}.\frac{\overline{CM}}{\overline{MC}}=\left(-1\right).\left(-1\right).\left(-1\right)=-1\)
Như vậy trong cả 2 trường hợp ta đều có: \(\frac{\overline{MB}}{\overline{MC}}.\frac{\overline{NC}}{\overline{NA}}.\frac{\overline{PA}}{\overline{PB}}=-1\)
p/s: điều kiện đủ và MELELAUS tối mai c/m tiếp, bh mk bận
ĐIỀU KIỆN ĐỦ: Ta chứng minh nếu 3 đường AM, BN, CP không đôi một song song thì chúng đồng quy
Giả sử AM, BN không song song. Đặt O là giao điểm của AM và BN
Khi đó CO và AB không song song. Thật vậy nếu CO và AB song song thì theo Talet ta có:
\(\frac{\overline{MB}}{\overline{MC}}=\frac{\overline{AB}}{\overline{OC}}=-\frac{\overline{AB}}{\overline{CA}}=-\frac{\overline{NA}}{\overline{NC}}\Rightarrow\frac{\overline{MB}}{\overline{,MC}}.\frac{\overline{NC}}{\overline{NA}}=-1\)
Mặt khác theo giải thiết: \(\frac{\overline{MB}}{\overline{MC}}.\frac{\overline{NC}}{\overline{NA}}.\frac{\overline{PA}}{\overline{PB}}=-1\)
suy ra: \(\frac{\overline{PA}}{\overline{PB}}=1\)\(\Rightarrow\)\(\overline{PA}=\overline{PB}\)\(\Rightarrow\)\(A\equiv B\)mâu thuẫn
Vậy CO không song song với AB.
Đặt P' là giao của CO với AB
Theo kết quả đạt được trong c/m đk cần \(\frac{\overline{MB}}{\overline{MC}}.\frac{\overline{NC}}{\overline{NA}}.\frac{\overline{P'A}}{\overline{P'B}}=-1\)
Từ đó với: \(\frac{\overline{MB}}{\overline{MC}}.\frac{\overline{NC}}{NA}.\frac{\overline{PA}}{\overline{PB}}=-1\)
ta có: \(\frac{\overline{P'A}}{\overline{P'B}}=\frac{\overline{PA}}{\overline{PB}}\) \(\Rightarrow\)\(P'\equiv P\)
Như vậy AM, BN, CP đồng quy
Sao cậu không tra trên google
Các cách chứng minh định lý pytago là :
Link :
www.bachkhoatrithuc.vn - Các cách chứng minh định lý Pitago,
Định lý có thể chứng minh bằng phương pháp đại số khi sử dụng 4 tam giác vuông bằng nhau có các cạnh a, b và c, các tam giác này được sắp xếp thành một hình vuông lớn có cạnh là cạnh huyền c. Các tam giác bằng nhau có diện tích , khi đó hình vuông nhỏ bên trong có cạnh là b − a và diện tích là (b − a)2.
Định lý Ta-lét:
Nếu một dường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại của nó định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ.
-Chúc bạn học tốt.
trong 1 tam giác vuông có tỉ lệ 3 cạnh
đầu tiên bình phương của cạnh huyền bạn bình phương tỉ số đó lên (rồi đánh 1 số nhỏ)
sau đó tổng bình phương 2 cạnh còn lại rồi tính ra cộng lại bằng số bình phương của cạnh huyền (đánh số 2)
từ (1),(2) \(\Rightarrow\)tổng bình phương cạnh huyền bằng tổng bình phương 2 cạnh góc vuông
vậy là ok rồi đó
chúc bạn học tốt
nhớ k nha
hhhh