K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

đây là ngử văn????? Khó wa trời

1 tháng 10 2017

khó ghê

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

Hình vẽ:

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

 

Lời giải:

1.

Xét tam giác $BHA$ và $BAC$ có:

$\widehat{B}$ chung

$\widehat{BHA}=\widehat{BAC}=90^0$

$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)

$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}\Rightarrow BA^2=BH.BC$

Tương tự, ta cũng cm được: $\triangle CHA\sim \triangle CAB$ (g.g)

$\Rightarrow CA^2=CH.CB$

Do đó:

$CA^2+CB^2=BH.BC+CH.CB=BC(BH+CH)=BC.BC=BC^2$ 

(đpcm)

b. Xét tam giác $BHA$ và $AHC$ có:

$\widehat{BHA}=\widehat{AHC}=90^0$

$\widehat{HBA}=\widehat{HAC}$ (cùng phụ $\widehat{BAH}$)

$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)

$\Rightarrow \frac{BH}{AH}=\frac{HA}{HC}$

$\Rightarrow AH^2=BH.CH$

c.

$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{AB^2+AC^2}{AB^2.AC^2}$

$=\frac{BC^2}{AB^2.AC^2}=(\frac{BC}{AB.AC})^2=(\frac{BC}{2S_{ABC}})^2$

$=(\frac{BC}{AH.BC})^2=\frac{1}{AH^2}$

.d. Hiển nhiên theo công thức diện tích. 

 

21 tháng 4 2017

Giả sử tam giác vuông ABC có cạnh huyền là a và hai cạnh góc vuông là b, c (hình a).

Diện tích hình vuông dựng trên cạnh huyền a là a2

Diện tích các hình vuông dựng trên hai cạnh góc vuông b, c lần lượt là b2 + c2

Theo định lí Pitago, tam giác vuông ABC có: a2 = b2 + c2

Vậy: Trong một tam giác vuông, tổng diện tích của hai hình vuông dựng trên hai cạnh góc vuông bằng diện tích hình vuông dựng trên cạnh huyền.

Chú ý: Ta có một cách chứng minh khác đinh lyd Pitago bằng diện tích. Trên hình b, hai hình vuông ABDE và GHIK cùng có cạnh bằng b + c.

Do đó

SABDE = (b+c)2= Sb+ Sc+ 4. (1)

SGHIK= (b+c)2 = Sa + 4. (2)

Từ (1) và (2) suy ra

Sb+ Sc = Sa

12 tháng 2 2020

có 129 tỷ người

11 tháng 6 2017

Gọi a (a ∈N*) là số người đang học ở trường đại học của Py-ta-go.

Số người đang học toán là a/2

Số người đang học nhạc là a/4 .

Số người đang suy nghĩ là a/7

Ngoài ra còn có 3 người phụ nữ nên ta có phương trình:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇔ 28a = 14a + 7a + 4a + 84

⇔ 28a – 25a = 84

⇔ 3a = 84

⇔ a = 28 (thỏa)

Vậy trường đại học của Py-ta-go có 28 người.

17 tháng 6 2017

Sao cậu không tra trên google

Các cách chứng minh định lý pytago là :

Link :

www.bachkhoatrithuc.vn - Các cách chứng minh định lý Pitago,

17 tháng 6 2017

Định lý có thể chứng minh bằng phương pháp đại số khi sử dụng 4 tam giác vuông bằng nhau có các cạnh a, b và c, các tam giác này được sắp xếp thành một hình vuông lớn có cạnh là cạnh huyền c. Các tam giác bằng nhau có diện tích , khi đó hình vuông nhỏ bên trong có cạnh là b − a và diện tích là (b − a)2.

Kết quả hình ảnh cho chứng minh định lí pytago