K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

mk giải 1 bài lm mẩu nha .

+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)

vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)

vậy giá trị nhỏ nhất của \(A\)\(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)

mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :

30 tháng 7 2018

lộn ! là phương trình bật 2 đối với ẩn là \(\sqrt{x}\) nha :

DƯƠNG PHAN KHÁNH DƯƠNG

AH
Akai Haruma
Giáo viên
24 tháng 7 2021

Đề bài khó hiểu quá. Bạn cần viết lại đề để được hỗ trợ tốt hơn.

12 tháng 8 2021

Akai Haruma

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Em không nêu ra yêu cầu và các điều kiện liên quan của đề bài thì làm sao mn giúp em được?

27 tháng 4 2020

2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)

Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2

Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )

Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng 

Nếu m > -4 thì  ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)

Ta được : \(-4< m\le\frac{-3}{2}\)

Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)