K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

Bài 1:

Với $a=0$ hoặc $b=0$ thì ta luôn có \(ab=a^ab^b\)

Với $a\neq 0; b\neq 0$ , tức là \(a,b\in (0;1]\)

Ta có: \(a^a-a=a(a^{a-1}-1)=a(\frac{1}{a^{1-a}}-1)=\frac{a}{a^{1-a}}(1-a^{1-a})\)

Với \(0\leq a\leq 1; 1-a\geq 0\Rightarrow a^{1-a}\leq 1\)

\(\Rightarrow 1-a^{1-a}\geq 0\)

\(\Rightarrow a^a-a=\frac{a}{a^{1-a}}(1-a^{1-a})\geq 0\)

\(\Rightarrow a^a\geq a\)

Tương tự: \(b^b\geq b\)

\(\Rightarrow a^ab^b\geq ab\) (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

Bài 2:

Ta có :\(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\geq 3\left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)\)

\(\Leftrightarrow \frac{1-3a}{3^a}+\frac{1-3b}{3^b}+\frac{1-3c}{3^c}\geq 0\)

\(\Leftrightarrow \frac{b+c-2a}{3^a}+\frac{a+c-2b}{3^b}+\frac{a+b-2c}{3^c}\geq 0\) (do $a+b+c=1$)

\(\Leftrightarrow (a-b)\left(\frac{1}{3^b}-\frac{1}{3^a}\right)+(b-c)\left(\frac{1}{3^c}-\frac{1}{3^b}\right)+(c-a)\left(\frac{1}{3^a}-\frac{1}{3^c}\right)\geq 0\)

\(\Leftrightarrow \frac{(a-b)(3^a-3^b)}{3^{a+b}}+\frac{(b-c)(3^b-3^c)}{3^{b+c}}+\frac{(c-a)(3^c-3^a)}{3^{c+a}}\geq 0(*)\)

Ta thấy, với mọi \(a\geq b\Rightarrow 3^a\geq 3^b; a\leq b\Rightarrow 3^a\leq 3^b\)

Tức là \(a-b; 3^a-3^b\) luôn cùng dấu

\(\Rightarrow (a-b)(3^a-3^b)\geq 0\). Kết hợp với \(3^{a+b}>0, \forall a,b\)

\(\Rightarrow \frac{(a-b)(3^a-3^b)}{3^{a+b}}\geq 0\)

Tương tự: \(\frac{(b-c)(3^b-3^c)}{3^{b+c}}\geq 0; \frac{(c-a)(3^c-3^a)}{3^{c+a}}\geq 0\)

Do đó $(*)$ đúng, ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

Câu 1: 

a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: Để P<1 thì \(\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)

\(\Leftrightarrow\sqrt{a}-2< 0\)

hay 0<a<4

25 tháng 7 2018

\(a.P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Để : \(P\in Z\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\in Z\Leftrightarrow\left(\sqrt{x}+1\right)\in\left\{\pm1;\pm2\right\}\)

+) \(\sqrt{x}+1=1\Leftrightarrow x=0\left(TM\right)\)

+) \(\sqrt{x}+1=-1\Leftrightarrow vô-n^o\)

+) \(\sqrt{x}+1=2\Leftrightarrow x=1\left(KTM\right)\)

+) \(\sqrt{x}+1=-2\Leftrightarrow vô-n^o\)

KL.............

\(b.Q=\dfrac{\sqrt{a}+1}{\sqrt{a}+2}=\dfrac{\sqrt{a}+2-1}{\sqrt{a}+2}=1-\dfrac{1}{\sqrt{a}+2}\)

Để : \(Q\in Z\Leftrightarrow\dfrac{1}{\sqrt{a}+2}\in Z\Leftrightarrow\left(\sqrt{a}+2\right)\in\left\{\pm1\right\}\)

+) \(\sqrt{a}+2=1\Leftrightarrow vô-n^o\)

+) \(\sqrt{a}+2=-1\Leftrightarrow vô-n^o\)

KL............

\(c.A=\dfrac{\sqrt{a}-1}{\sqrt{a}-4}=\dfrac{\sqrt{a}-4+3}{\sqrt{a}-4}=1+\dfrac{3}{\sqrt{a}-4}\)

Để : \(A\in Z\Leftrightarrow\dfrac{3}{\sqrt{a}-4}\in Z\Leftrightarrow\left(\sqrt{a}-4\right)\in\left\{\pm1;\pm3\right\}\)

+) \(\sqrt{a}-4=1\Leftrightarrow a=25\left(TM\right)\)

+) \(\sqrt{a}-4=-1\Leftrightarrow a=9\left(TM\right)\)

+) \(\sqrt{a}-4=3\Leftrightarrow a=49\left(TM\right)\)

+) \(\sqrt{a}-4=-3\Leftrightarrow a=1\left(TM\right)\)

KL............

P/s : Mình thấy đề bài b sai nhé , mẫu phải là \(\sqrt{a}-2\) thì mới phù hợp ĐK đã cho .

16 tháng 6 2018
https://i.imgur.com/Godbi3O.jpg
NV
13 tháng 5 2021

\(\sqrt{A}\ge0\) ; \(\forall A\) nên GTNN của \(\sqrt{A}\) là \(0\)

Dấu "=" xảy ra khi \(x=0\)