K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

Vì \(4< 5\Leftrightarrow\sqrt{4}< \sqrt{5}\Leftrightarrow2< \sqrt{5}\Leftrightarrow2-\sqrt{5}< 0\)

Do đó hàm số \(y=\left(2-\sqrt{5}\right)x-2\)nghịch biến trên \(ℝ\)

NM
1 tháng 9 2021

hàm số trên đồng biến vì hệ số của x là 

\(3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2>0\)

1 tháng 9 2021

Cách đơn giản : Xét hệ số góc \(3-2\sqrt{2}\)ta có \(9>8\Rightarrow3>2\sqrt{2}\Leftrightarrow3-2\sqrt{2}>0\)

Vậy hàm số trên đồng biến 

Cách không đơn giản : Xét \(y=f\left(x\right)=\left(3-2\sqrt{2}\right)x+\sqrt{2}-1\)

Hàm số trên xác định với mọi x . Lấy các giá trị x1 , x2 sao cho x1 < x2

Ta có : \(f\left(x_1\right)-f\left(x_2\right)=\left(3-2\sqrt{2}\right)x_1+\sqrt{2}-1-\left[\left(3-2\sqrt{2}\right)x_2+\sqrt{2}-1\right]\)

\(=\left(3-2\sqrt{2}\right)x_1+\sqrt{2}-1-\left(3-2\sqrt{2}\right)x_2-\sqrt{2}+1\)

\(=\left(3-2\sqrt{2}\right)\left(x_1-x_2\right)< 0\)( vì x1 < x2 )

=> f(x1) < f(x2) . Vậy hàm số đã cho đồng biến

11 tháng 9 2019

Hàm số y = (3 -  2  )x + 1 có hệ số a = 3 -  2  , hệ số b = 1

Ta có: a = 3 - 2 > 0 nên hàm số đồng biến trên R

18 tháng 11 2016

B1a) m khác 5, khác -2

b) m khác 3, m < 3

B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến

b) h số trên là nghịch biến vì 2x > căn 3x

c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến

13 tháng 10 2018

Ta có a = 1- √5 < 0 nên hàm số đã cho nghịch biến trên R

NV
8 tháng 7 2021

a.

Hàm số đồng biến trên R khi và chỉ khi:

\(\left\{{}\begin{matrix}7-m\ge0\\\sqrt{7-m}-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le7\\m< 6\end{matrix}\right.\) \(\Leftrightarrow m< 6\)

b. Để hàm nghịch biến trên R

\(\Leftrightarrow m^2+m+1< 0\)

\(\Leftrightarrow\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}< 0\) (vô lý)

Vậy ko tồn tại m thỏa mãn yêu cầu

13 tháng 7 2021

cảm ơn tất cả mọi người,đấy là bài cuối của tuần này rồi

30 tháng 4 2022

`\sqrt{5} - 2 > 0` ngược dấu với `x` `(x < 0)`

`=>` H/s nghịch biến khi `x < 0`