K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

Số đỉnh chung bằng số nghiệm chung của hai phương trình :

\(z^{1982}-1=0,z^{2973}-1=0\)

Ứng dụng định lý , số nghiệm chung là :

d=UCLN(1982,2973)=991

13 tháng 10 2017

16 tháng 10 2018

Chọn đáp án A

Trong đa giác đều  A 1 A 2 A 3 . . . A 30  nội tiếp trong đường tròn (O) cứ mỗi điểm A1 có một điểm Ai đối xứng với Al qua O(Al ≠ Ai) ta dược một đường kính.

Tương tự với  A 1 A 2 A 3 . . . A 30 .  tất cả 15 đường kính mà các điểm là đỉnh của đa giác đều  A 1 A 2 A 3 . . . A 30

Cứ hai đường kính đó ta được một hình chữ nhật mà bốn điểm là các đỉnh của đa giác đều: có  C 15 2 = 105 hình chữ nhật tất cả.

28 tháng 10 2017

6 tháng 10 2019

16 tháng 6 2018

20 tháng 1 2017

Chọn C

Phương pháp:

Đa giác đều có n cạnh (với n chẵn) thì luôn tồn tại đường chéo là đường kính của đường tròn ngoại tiếp. Từ đó sử dụng kiến thức về tổ hợp để tính toán.

Cách giải:

Số hình vuông tạo thành từ các đỉnh của đa giác đều 20 cạnh là 20: 4 = 5 hình vuông (do hình vuông có 4 cạnh bằng nhau và 4 góc bằng nhau)

Vì đa giác đều có 20 đỉnh nên có 10 cặp đỉnh đối diện hay có 10 đường chéo đi qua tâm đường tròn ngoại tiếp.

Cứ mỗi 2 đường chéo đi qua tâm đường tròn ngoại tiếp tạo thành một hình chữ nhật nên số hình chữ nhật tạo thành là C 10 2  hình trong đó có cả những hình chữ nhật là hình vuông.

Số hình chữ nhật không phải hình vuông tạo thành là C 10 2 - 5 = 40  hình. 

31 tháng 8 2018

Đáp án C

Ta có 3d = 3m = 2c, suy ra C đúng.