Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A
Trong đa giác đều A 1 A 2 A 3 . . . A 30 nội tiếp trong đường tròn (O) cứ mỗi điểm A1 có một điểm Ai đối xứng với Al qua O(Al ≠ Ai) ta dược một đường kính.
Tương tự với A 1 A 2 A 3 . . . A 30 . Có tất cả 15 đường kính mà các điểm là đỉnh của đa giác đều A 1 A 2 A 3 . . . A 30
Cứ hai đường kính đó ta được một hình chữ nhật mà bốn điểm là các đỉnh của đa giác đều: có C 15 2 = 105 hình chữ nhật tất cả.
Số đỉnh chung bằng số nghiệm chung của hai phương trình :
\(z^{1982}-1=0,z^{2973}-1=0\)
Ứng dụng định lý , số nghiệm chung là :
d=UCLN(1982,2973)=991
Gọi \(A_1,A_2,...,A_{2018}\) là các đỉnh của đa giác đều đó.
Gọi \(\left(O\right)\) là đa giác đều ngoại tiếp đa giác đó.
Các đỉnh của đa giác chia \(\left(O\right)\) thành 2018 cung tròn bằng nhau, mỗi cung có số đo \(\dfrac{360^o}{2018}\).
Các góc của tam giác sẽ là góc nội tiếp của \(\left(O\right)\) chắn các cung có số đo \(n.\dfrac{360^o}{2018}\), góc tương ứng của tam giác sẽ là \(\dfrac{n}{2}.\dfrac{360^o}{2018}\).
Xét tam giác ABC có các đỉnh là đỉnh của đa giác đều, với A cố định. Ta sẽ tìm số cách xác định điểm B, C thỏa mãn \(\widehat{BAC}>100^o\).
suy ra \(\stackrel\frown{BC}>160^o\) khi đó có số cung thỏa mãn là \(\left[\dfrac{160^o}{\dfrac{360^o}{2018}}\right]=896\) suy ra có \(897\) đỉnh. Vậy có số cách là: \(2018.C_{896}^2\) cách.