K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

GTNN của A là 7

16 tháng 10 2016

Điều kiện x \(\ge0\)

Với x1 \(\ge\)x2 thì f(x1) - f(x2)

= x12 + x1 + √x1 - x22 - x2 - √x2 = (√x1 - √x2)(√x1 + √x2)(x1 + x2) + (√x1 - √x2)(√x1 + √x2) + (√x1 - √x2)

= (√x1 - √x2)[(√x1 + √x2)(x1 + x2) + (√x1 + √x2) + 1] \(\ge0\)

Vậy hàm số này đồng biến trên x \(\ge0\)

Vậy A đạt GTNN khi x đạt GTNN hay A = 7 khi x = 0

16 tháng 10 2016

Điều kiện x > hoặc = 0. Do đó x^2; x; căn bậc hai của x đều > hoặc = 0. Do đó A > hoặc = 7.

Amin = 7 khi và chỉ khi x = 0

15 tháng 10 2016

Áp dụng BĐT Cauchy ta có : 

\(\frac{x^2+2}{\sqrt{x^2+1}}=\frac{x^2+1+1}{\sqrt{x^2+1}}=\sqrt{x^2+1}+\frac{1}{\sqrt{x^2+1}}\ge2\sqrt{\sqrt{x^2+1}.\frac{1}{\sqrt{x^2+1}}}=2\)

Vậy BT đạt giá trị nhỏ nhất bằng 2 khi x = 0

15 tháng 10 2016

\(\frac{x^2+2}{\sqrt{x^2+1}}=\sqrt{x^2+1}+\frac{1}{\sqrt{x^2+1}}\)

= (\(\sqrt[4]{x^2+1}-\frac{1}{\sqrt[4]{x^2+1}}\))+ 2\(\ge2\)

Vậy GTNN là 2 đạt được khi x = 0

29 tháng 9 2016

Ta có x2 + y2\(\ge2xy\)

<=> x2 + y2 \(\ge\frac{\left(x+y\right)^2}{2}\)= 5

Khi x = y = \(\frac{\sqrt{10}}{2}\)

29 tháng 9 2016

Mình đã trả lời câu hỏi này của bạn rồi! Bạn vui lòng kiểm tra lại nhé :)

6 tháng 8 2016

\(ĐKXĐ:\)  \(\hept{\begin{cases}\sqrt{x}-1\ne0\\\sqrt{x}\ge0\\x-\sqrt{x}+1\ne0\end{cases}}\)  \(\Leftrightarrow\)  \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)   ( vì \(x-\sqrt{x}+1>0\) )

Ta có:

\(A=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1=x-\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\frac{\sqrt{x^3}+1}{x-\sqrt{x}+1}+1\)

\(=x-2\sqrt{x}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1=x-2\sqrt{x}+\sqrt{x}+1+1\)

nên  \(A=x-\sqrt{x}+2=x-2.\frac{1}{2}\sqrt{x}+\frac{1}{4}+\frac{7}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Vậy,  \(A_{min}=\frac{7}{4}\)  khi  \(x=\frac{1}{4}\)

29 tháng 9 2016

Không tìm được đâu. Nếu x âm và càng bé hoặc x dương và càng lớn thì cái đó càng gần bằng 0

29 tháng 9 2016

Như thế này cho dễ nhé :)

\(\frac{x^2-2x+2007}{2007x^2}=\frac{1}{x^2}-\frac{2}{2007x}+\frac{1}{2007}\)

Đặt \(t=\frac{1}{x},a=\frac{1}{2007}\)

Khi đó bt trở thành \(t^2-2at+a=\left(t^2-2at+a^2\right)+a-a^2=\left(t-a\right)^2+a-a^2\ge a-a^2\)

Vậy BT đạt giá trị nhỏ nhất bằng \(\frac{1}{2007}-\frac{1}{2007^2}\) khi \(\frac{1}{x}=\frac{1}{2007}\Rightarrow x=2007\)