K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

Không tìm được đâu. Nếu x âm và càng bé hoặc x dương và càng lớn thì cái đó càng gần bằng 0

29 tháng 9 2016

Như thế này cho dễ nhé :)

\(\frac{x^2-2x+2007}{2007x^2}=\frac{1}{x^2}-\frac{2}{2007x}+\frac{1}{2007}\)

Đặt \(t=\frac{1}{x},a=\frac{1}{2007}\)

Khi đó bt trở thành \(t^2-2at+a=\left(t^2-2at+a^2\right)+a-a^2=\left(t-a\right)^2+a-a^2\ge a-a^2\)

Vậy BT đạt giá trị nhỏ nhất bằng \(\frac{1}{2007}-\frac{1}{2007^2}\) khi \(\frac{1}{x}=\frac{1}{2007}\Rightarrow x=2007\)

3 tháng 6 2017

Đặt

\(A=\dfrac{x^2-2x+2007}{2007x^2}=\dfrac{2007x^2-2\cdot x\cdot2007\cdot2007^2}{2007^2x^2}\)

\(\Rightarrow A=\dfrac{\left(x-2007\right)^2}{2007^2x^2}+\dfrac{2006}{2007^2}\ge\dfrac{2006}{2007^2}\)

Dấu ''='' xảy ra

\(\Leftrightarrow\dfrac{\left(x-2007\right)^2}{2007^2x^2}=0\Rightarrow\left(x-2007\right)^2=0\)

\(\Rightarrow x=2007\)

Vậy \(A_{MIN}=\dfrac{2006}{2007^2}\Leftrightarrow x=2007\)

3 tháng 6 2017

Đặt A=\(\dfrac{x^2-2x+2007}{2007x^2}\)

2007A=\(\dfrac{2007x^2-2.2007x^2+2007^2}{2007x^2}\)

2007A-\(\dfrac{2006}{2007}\)=\(\dfrac{2007x^2-2.2007x+2007^2-2006x^2}{2007x^2}\)

2007A-\(\dfrac{2006}{2007}\)=\(\dfrac{x^2-2.2007x+2007^2}{2007x^2}\)

2007A-\(\dfrac{2006}{2007}\)=\(\dfrac{\left(x-2007\right)^2}{2007x^2}>=0\)

=>2007A>=\(\dfrac{2006}{2007}\)

=>A>=\(\dfrac{2006}{2007^2}\)

=>GTNN của A=\(\dfrac{2006}{2007^2}\)Dấu = xảy ra khi x=2007

4 tháng 10 2016

1/ Bạn trên làm rồi mình không làm lại.

2/ \(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}=\frac{\left(3+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}+\frac{\left(3-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{2}-\sqrt{3}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)}\)

\(=\frac{3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}+\sqrt{15}-5}{2\sqrt{6}}+\frac{3\sqrt{2}-3\sqrt{3}+3\sqrt{5}-\sqrt{10}+\sqrt{15}-5}{-2\sqrt{6}}\)

\(=\frac{3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}+\sqrt{15}-5-3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}-\sqrt{15}+5}{2\sqrt{6}}\)

\(=\frac{6\sqrt{3}-6\sqrt{5}+2\sqrt{10}}{2\sqrt{6}}=\frac{3}{\sqrt{2}}-\frac{3\sqrt{5}}{\sqrt{6}}+\frac{\sqrt{5}}{\sqrt{3}}=\frac{9\sqrt{2}-3\sqrt{30}+2\sqrt{15}}{6}\)

4 tháng 10 2016

\(\frac{x^2-2x+2007}{2007x^2}=\frac{x^2}{2007x^2}-\frac{2x}{2007x^2}+\frac{2007}{2007x^2}=\frac{1}{2007}-\frac{2}{2007x}+\frac{1}{x^2}\)

đặt t = 1/x

=> \(\frac{1}{2007}-\frac{2}{2007x}+\frac{1}{x^2}=\frac{1}{2007}-\frac{2t}{2007}+t^2=\frac{1}{2007}-\frac{2t}{2007}+\frac{2007t^2}{2007}=\frac{2007t^2-2t+1}{2007}\)

giải theo kiểu casio 570 VN PLUS cho nhanh nhé

bấm MODE 5 3 2007 = -2 = 1 = = = = =

ra gtnn của 2007t2 - 2t + 1 là 2006/2007 tại t = 1/2007

vậy gtnn của \(\frac{2007t^2-2t+1}{2007}\)là \(\frac{\frac{2006}{2007}}{2007}\)tại t = 1/2007

t = 1/2007  => 1/x = 1//2007  => x = 2007

vậy x = 2007 thì biểu thức có gtnn

1 tháng 3 2017

Đặt A = \(\dfrac{x^2-2x+2007}{2007x^2}\)

A = \(\dfrac{1}{2007}\) - \(\dfrac{2}{2007x}\) + \(\dfrac{1}{x^2}\)

A = ( \(\dfrac{1}{x^2}\) - \(\dfrac{2}{2007x}\) + \(\dfrac{1}{2007^2}\) ) + (\(\dfrac{1}{2007}-\dfrac{1}{2007^2}\) )

A = ( \(\dfrac{1}{x}-\dfrac{1}{2007}\))2 + (\(\dfrac{1}{2007}-\dfrac{1}{2007^2}\))

Để Amin <=> \(\dfrac{1}{x}-\dfrac{1}{2007}\) = 0

<=> x = 2007

Vậy x = 2007 thì Amin

bài này từng có trên violimpic đấy bạn

1 tháng 3 2017

https://hoc24.vn/vip/phitaiminh9a1

ờ,mk thi vio mà!!!

10 tháng 6 2017

điều kiện là j bạn :)

10 tháng 6 2017

Chắc là tự tìm đk đó Nguyễn Ngọc Sáng 

6 tháng 8 2016

\(ĐKXĐ:\)  \(\hept{\begin{cases}\sqrt{x}-1\ne0\\\sqrt{x}\ge0\\x-\sqrt{x}+1\ne0\end{cases}}\)  \(\Leftrightarrow\)  \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)   ( vì \(x-\sqrt{x}+1>0\) )

Ta có:

\(A=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1=x-\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\frac{\sqrt{x^3}+1}{x-\sqrt{x}+1}+1\)

\(=x-2\sqrt{x}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1=x-2\sqrt{x}+\sqrt{x}+1+1\)

nên  \(A=x-\sqrt{x}+2=x-2.\frac{1}{2}\sqrt{x}+\frac{1}{4}+\frac{7}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Vậy,  \(A_{min}=\frac{7}{4}\)  khi  \(x=\frac{1}{4}\)

15 tháng 10 2016

Áp dụng BĐT Cauchy ta có : 

\(\frac{x^2+2}{\sqrt{x^2+1}}=\frac{x^2+1+1}{\sqrt{x^2+1}}=\sqrt{x^2+1}+\frac{1}{\sqrt{x^2+1}}\ge2\sqrt{\sqrt{x^2+1}.\frac{1}{\sqrt{x^2+1}}}=2\)

Vậy BT đạt giá trị nhỏ nhất bằng 2 khi x = 0

15 tháng 10 2016

\(\frac{x^2+2}{\sqrt{x^2+1}}=\sqrt{x^2+1}+\frac{1}{\sqrt{x^2+1}}\)

= (\(\sqrt[4]{x^2+1}-\frac{1}{\sqrt[4]{x^2+1}}\))+ 2\(\ge2\)

Vậy GTNN là 2 đạt được khi x = 0