Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
a. ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$
$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$
$\Leftrightarrow -\sqrt{x-1}=-17$
$\Leftrightarrow \sqrt{x-1}=17$
$\Leftrightarrow x-1=289$
$\Leftrightarrow x=290$
b. ĐKXĐ: $x\geq \frac{1}{2}$
PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$
$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$
$\Leftrihgtarrow \sqrt{2x-1}=2$
$\Leftrightarrow x=2,5$ (tm)
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$
$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)
Vậy pt vô nghiệm
2, \(\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9x+9}+24\sqrt{\dfrac{x+1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x+1}-\dfrac{9}{2}\sqrt{x+1}+3\sqrt{x+1}=-17\)
\(\Leftrightarrow-\sqrt{x+1}=-17\)
\(\Leftrightarrow x+1=289\left(x>0\right)\)
\(\Leftrightarrow x=288\)
Vậy x = 288
3, \(-5x+7\sqrt{x}+12=0\)
\(\Leftrightarrow-5x+12\sqrt{x}-5\sqrt{x}+12=0\)
\(\Leftrightarrow\sqrt{x}\left(12-5\sqrt{x}\right)+\left(12-5\sqrt{x}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(12-5\sqrt{x}\right)=0\)
Do \(\sqrt{x}+1>0\)
\(\Rightarrow12-5\sqrt{x}=0\Leftrightarrow x=\dfrac{144}{25}\)
Vậy...
1. (Đề có chút sai sai nên mình sửa lại nhé) \(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
(ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=16-\sqrt{x-1}\)
\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
\(\Leftrightarrow2\sqrt{x-1}=16\)
\(\Leftrightarrow\sqrt{x-1}=8\)
\(\Leftrightarrow x-1=64\)
\(\Leftrightarrow x=65\left(tm\right)\)
Vậy pt đã cho có nghiệm x=65.
2. \(\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9x+9}+24\sqrt{\dfrac{x+1}{64}}=-17\)
(ĐK: \(x\ge-1\))
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9\left(x+1\right)}+3\sqrt{x+1}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x+1}-\dfrac{9}{2}\sqrt{x+1}+3\sqrt{x+1}=-17\)
\(\Leftrightarrow-\sqrt{x+1}=-17\)
\(\Leftrightarrow\sqrt{x+1}=17\)
\(\Leftrightarrow x+1=289\)
\(\Leftrightarrow x=288\left(tm\right)\)
Vậy \(S=\left\{288\right\}\)
3. \(-5x+7\sqrt{x}+12=0\) (ĐK: \(x\ge0\))
\(\Leftrightarrow5x-7\sqrt{x}-12=0\)
\(\Leftrightarrow5x+5\sqrt{x}-12\sqrt{x}-12=0\)
\(\Leftrightarrow5\sqrt{x}\left(\sqrt{x}+1\right)-12\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=0\\5\sqrt{x}-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=-1\left(vô.lý\right)\\5\sqrt{x}=12\end{matrix}\right.\Leftrightarrow\sqrt{x}=\dfrac{12}{5}\Leftrightarrow x=\dfrac{144}{25}\left(tm\right)\)
Vậy pt có nghiệm \(x=\dfrac{144}{25}\)
\(a.\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)( x lớn hơn hoặc =1)
\(\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}\)+2=0
\(\sqrt{x-1}\left(1+\sqrt{4}-\sqrt{25}\right)=-2\)
\(\sqrt{x-1}\left(1+2-5\right)=-2\)
\(\sqrt{x-1}.\left(-2\right)=-2\)
\(\sqrt{x-1}=-2.2\)
\(\sqrt{x-1}-4\)(ko thỏa mãn)
b)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9\left(x-1\right)}+24\dfrac{\sqrt{x-1}}{8}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}.3\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\left(\dfrac{1}{2}-\dfrac{9}{2}+3\right)\sqrt{x-1}=-17\)
\(7\sqrt{x-1}=-17\)
\(\sqrt{x-1}=-\dfrac{17}{7}\)(ko thỏa mãn căn bậc 2 ko có số âm)
a: Ta có: \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow x-1=1\)
hay x=2
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\left(x\text{ ≥}1\right)\)
⇔ \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
⇔ \(-\sqrt{x-1}=-17\)
⇔ \(x=290\left(TM\right)\)
KL..................
Câu 1:
ĐK: \(x\geq \frac{-3}{2}\)
\(\sqrt{2x+3}=3-\sqrt{5}\)
\(\Rightarrow 2x+3=(3-\sqrt{5})^2=14-6\sqrt{5}\)
\(\Rightarrow x=\frac{11-6\sqrt{5}}{2}\)
Câu 2: ĐK: \(x\geq 0\)
\(\sqrt{5+\sqrt{7x}}=2+\sqrt{7}\)
\(\Rightarrow 5+\sqrt{7x}=(2+\sqrt{7})^2=11+4\sqrt{7}\)
\(\Rightarrow \sqrt{7x}=6+4\sqrt{7}\)
\(\Rightarrow 7x=(6+4\sqrt{7})^2\Rightarrow x=\frac{(6+4\sqrt{7})^2}{7}\)
Câu 3: ĐK: \(x\geq 0\)
\((\sqrt{x}-2)(5-\sqrt{x})=4-x\)
\(\Leftrightarrow 5\sqrt{x}-x-10+2\sqrt{x}=4-x\)
\(\Leftrightarrow 7\sqrt{x}=14\Rightarrow \sqrt{x}=2\Rightarrow x=4\)
Câu 4: ĐK: \(x\ge 1\)
Sửa đề \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
\(\Leftrightarrow \frac{\sqrt{x-1}}{2}-\frac{3}{2}\sqrt{9}.\sqrt{x-1}+24\sqrt{\frac{1}{64}}\sqrt{x-1}=-17\)
\(\Leftrightarrow \frac{\sqrt{x-1}}{2}-\frac{9\sqrt{x-1}}{2}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow \sqrt{x-1}(\frac{1}{2}-\frac{9}{2}+3)=-17\)
\(\Leftrightarrow -\sqrt{x-1}=-17\Rightarrow \sqrt{x-1}=17\Rightarrow x=17^2+1=290\)
a/ \(\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3}{2}.\sqrt{9x-9}+24.\sqrt{\dfrac{x-1}{64}}=-17\) ( đkxđ : \(x\ge1\) )
\(\Leftrightarrow\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3}{2}.\sqrt{3^2\left(x-1\right)}+24.\sqrt{\dfrac{x-1}{8^2}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3.3}{2}.\sqrt{x-1}+\dfrac{24}{8}\sqrt{x-1}=-17\)
\(\Leftrightarrow\) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)\left(\dfrac{1}{2}-\dfrac{9}{2}+3\right)=-17\)
\(\Leftrightarrow\sqrt{\left(x-1\right)}.\left(-1\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{-17}{-1}=17\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=17^2\)
\(\Leftrightarrow x-1=289\)
\(\Leftrightarrow x=289+1=290\)
vậy x= 290 là nghiệm của phương trình a
b/ \(3x-7\sqrt{x}+4=0\) ( đkxđ : \(x\ge0\) )
\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(\Leftrightarrow3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(3\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}-4=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{4}{3}\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{9}\\x=1\end{matrix}\right.\)
vậy phương trình có tập nghiệm S=\(\left\{1;\dfrac{16}{9}\right\}\)
c/ \(-5x+7\sqrt{x}+12=0\) ( đkxđ: \(x\ge0\) )
\(\Leftrightarrow-\left(5x+5\sqrt{x}-12\sqrt{x}-12\right)=0\)
\(\Leftrightarrow-\left[5\sqrt{x}\left(\sqrt{x}+1\right)-12\left(\sqrt{x}+1\right)\right]\)= 0
\(\Leftrightarrow-\left(5\sqrt{x}-12\right)\left(\sqrt{x}+1\right)=0\)
vì \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1>0\)
\(\Rightarrow5\sqrt{x}-12=0\)
\(\Leftrightarrow\sqrt{x}=\dfrac{12}{5}\Rightarrow x=\dfrac{144}{25}\)
vậy \(x=\dfrac{144}{25}\) là nghiệm của phương trình c
a, ĐKXĐ : \(x\ge1\)
Ta có ; \(PT\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}.\sqrt{9}\sqrt{x-1}+24.\sqrt{\dfrac{1}{64}}\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}\left(\dfrac{1}{2}-\dfrac{3}{2}\sqrt{9}+24\sqrt{\dfrac{1}{64}}\right)=-17\)
\(\Leftrightarrow-\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x=290\left(TM\right)\)
Vậy ....
b, ĐKXĐ : \(x\ge3\)
Ta có : \(PT\Leftrightarrow x-3-7\sqrt{x-3}+12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x-3}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=16\\x-3=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=19\\x=12\end{matrix}\right.\) ( TM )
Vậy ..
a) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow-\sqrt{x-1}=-17\)
\(\Leftrightarrow x-1=17^2=289\)
hay x=290
Vậy: S={290}
b) Ta có: \(x-7\sqrt{x-3}+9=0\)
\(\Leftrightarrow x-7\sqrt{x-3}=-9\)
\(\Leftrightarrow x-3-2\cdot\sqrt{x-3}\cdot\dfrac{7}{2}+\dfrac{49}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow\left(\sqrt{x-3}-\dfrac{7}{2}\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x-3}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=16\\x-3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=19\\x=12\end{matrix}\right.\)
Vậy: S={19;12}